modeling_bitnet.py 76.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch LLaMA model."""

import math
import warnings
from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
    logging,
    replace_return_docstrings,
)
from configuration_bitnet import BitnetConfig
from utils_quant import BitLinear, BitLinearBitBLAS
from transformers.utils.hub import cached_file

if is_flash_attn_2_available():
    from flash_attn import flash_attn_func, flash_attn_varlen_func
    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa: F401


def find_layers(module, layers=None, name=""):
    if not layers:
        layers = [nn.Linear]
    for layer in layers:
        if isinstance(module, layer):
            return {name: module}
    res = {}
    for name1, child in module.named_children():
67
        res.update(find_layers(child, layers=layers, name=name + "." + name1 if name != "" else name1))
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    return res


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "BitnetConfig"


def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


class BitnetRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        BitnetRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


ALL_LAYERNORM_LAYERS.append(BitnetRMSNorm)


class BitnetRotaryEmbedding(nn.Module):
109
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
110
111
112
113
114
        super().__init__()
        self.scaling_factor = scaling_factor
        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
115
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
116
117
118
        self.register_buffer("inv_freq", inv_freq)
        # For BC we register cos and sin cached
        self.max_seq_len_cached = max_position_embeddings
119
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
120
121
122
123
        t = t / self.scaling_factor
        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
124
125
        self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
        self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

    @property
    def sin_cached(self):
        logger.warning_once(
            "The sin_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
            "the forward method of RoPE from now on instead. It is not used in the `BitnetAttention` class"
        )
        return self._sin_cached

    @property
    def cos_cached(self):
        logger.warning_once(
            "The cos_cached attribute will be removed in 4.39. Bear in mind that its contents changed in v4.38. Use "
            "the forward method of RoPE from now on instead. It is not used in the `BitnetAttention` class"
        )
        return self._cos_cached

    @torch.no_grad()
    def forward(self, x, position_ids):
        # x: [bs, num_attention_heads, seq_len, head_size]
146
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
147
148
149
150
        position_ids_expanded = position_ids[:, None, :].float()
        # Force float32 since bfloat16 loses precision on long contexts
        # See https://github.com/huggingface/transformers/pull/29285
        device_type = x.device.type
151
        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
152
153
154
155
156
157
158
159
160
161
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()
        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
162
163
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class BitnetMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = BitLinear(
            self.hidden_size,
            self.intermediate_size,
            bias=False,
            weight_bits=config.weight_bits,
            input_bits=config.input_bits,
        )
        self.up_proj = BitLinear(
            self.hidden_size,
            self.intermediate_size,
            bias=False,
            weight_bits=config.weight_bits,
            input_bits=config.input_bits,
        )
        self.down_proj = BitLinear(
            self.intermediate_size,
            self.hidden_size,
            bias=False,
            weight_bits=config.weight_bits,
            input_bits=config.input_bits,
        )
        self.act_fn = ACT2FN[config.hidden_act]
        self.ffn_layernorm = BitnetRMSNorm(self.intermediate_size, eps=config.rms_norm_eps)

    def forward(self, x):
        x = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
        x = self.ffn_layernorm(x)
        x = self.down_proj(x)
        return x


class BitnetMLPFuseGateUp(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_up_proj = BitLinear(
            self.hidden_size,
            self.intermediate_size * 2,
            bias=False,
            weight_bits=config.weight_bits,
            input_bits=config.input_bits,
        )
        self.down_proj = BitLinear(
            self.intermediate_size,
            self.hidden_size,
            bias=False,
            weight_bits=config.weight_bits,
            input_bits=config.input_bits,
        )
        self.act_fn = ACT2FN[config.hidden_act]
        self.ffn_layernorm = BitnetRMSNorm(self.intermediate_size, eps=config.rms_norm_eps)

    @classmethod
    def from_bit_mlp(cls, bit_mlp: BitnetMLP):
        module = cls(bit_mlp.config)
        # assign the weights
258
        module.gate_up_proj.weight = nn.Parameter(torch.cat([bit_mlp.gate_proj.weight, bit_mlp.up_proj.weight], dim=0))
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        module.down_proj = bit_mlp.down_proj
        module.ffn_layernorm = bit_mlp.ffn_layernorm
        return module

    def forward(self, x):
        gate_up = self.gate_up_proj(x)
        gate, up = torch.chunk(gate_up, chunks=2, dim=-1)
        x = self.act_fn(gate) * up
        x = self.ffn_layernorm(x)
        x = self.down_proj(x)
        return x


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
280
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


class BitnetAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: BitnetConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
295
296
                "when creating this class."
            )
297
298
299
300
301
302
303
304
305
306
307
308
309

        self.attention_dropout = config.attention_dropout
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.is_causal = True

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
310
311
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`: {self.num_heads})."
            )
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

        self.q_proj = BitLinear(
            self.hidden_size,
            self.num_heads * self.head_dim,
            bias=config.attention_bias,
            weight_bits=config.weight_bits,
            input_bits=config.input_bits,
        )
        self.k_proj = BitLinear(
            self.hidden_size,
            self.num_key_value_heads * self.head_dim,
            bias=config.attention_bias,
            weight_bits=config.weight_bits,
            input_bits=config.input_bits,
        )
        self.v_proj = BitLinear(
            self.hidden_size,
            self.num_key_value_heads * self.head_dim,
            bias=config.attention_bias,
            weight_bits=config.weight_bits,
            input_bits=config.input_bits,
        )
        self.o_proj = BitLinear(
            self.hidden_size,
            self.hidden_size,
            bias=config.attention_bias,
            weight_bits=config.weight_bits,
            input_bits=config.input_bits,
        )
        self._init_rope()
        self.inner_attn_ln = BitnetRMSNorm(self.hidden_size, eps=config.rms_norm_eps)

    def _init_rope(self):
        if self.config.rope_scaling is None:
            self.rotary_emb = BitnetRotaryEmbedding(
                self.head_dim,
                max_position_embeddings=self.max_position_embeddings,
                base=self.rope_theta,
            )
        else:
            raise NotImplementedError

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
372
373
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
374
375
376
377
378
379
380
381

        past_key_value = getattr(self, "past_key_value", past_key_value)
        cos, sin = self.rotary_emb(value_states, position_ids)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
382
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
383
384
385
386

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

387
        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
388
389

        if attention_mask is not None:  # no matter the length, we just slice it
390
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
391
392
393
            attn_weights = attn_weights + causal_mask

        # upcast attention to fp32
394
395
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
396
397
398
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
399
            raise ValueError(f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is {attn_output.size()}")
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

        attn_output = attn_output.transpose(1, 2).contiguous()

        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        attn_output = self.inner_attn_ln(attn_output)
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class BitnetAttentionQKVFused(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: BitnetConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
425
426
                "when creating this class."
            )
427
428
429
430
431
432
433
434
435
436
437
438
439

        self.attention_dropout = config.attention_dropout
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        self.is_causal = True

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
440
441
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`: {self.num_heads})."
            )
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

        self.qkv_proj = BitLinear(
            self.hidden_size,
            self.num_heads * self.head_dim + (self.num_key_value_heads * self.head_dim) * 2,
            bias=config.attention_bias,
            weight_bits=config.weight_bits,
            input_bits=config.input_bits,
        )
        self.o_proj = BitLinear(
            self.hidden_size,
            self.hidden_size,
            bias=config.attention_bias,
            weight_bits=config.weight_bits,
            input_bits=config.input_bits,
        )
        self._init_rope()
        self.inner_attn_ln = BitnetRMSNorm(self.hidden_size, eps=config.rms_norm_eps)

    def _init_rope(self):
        if self.config.rope_scaling is None:
            self.rotary_emb = BitnetRotaryEmbedding(
                self.head_dim,
                max_position_embeddings=self.max_position_embeddings,
                base=self.rope_theta,
            )
        else:
            raise NotImplementedError

    @classmethod
    def from_bit_attention(cls, bit_attention: BitnetAttention):
        module = cls(bit_attention.config, bit_attention.layer_idx)
        # assign the weights
        module.qkv_proj.weight = nn.Parameter(
475
476
            torch.cat([bit_attention.q_proj.weight, bit_attention.k_proj.weight, bit_attention.v_proj.weight], dim=0)
        )
477
478
        if bit_attention.q_proj.bias is not None and bit_attention.k_proj.bias is not None and bit_attention.v_proj.bias is not None:
            module.qkv_proj.bias = nn.Parameter(
479
480
                torch.cat([bit_attention.q_proj.bias, bit_attention.k_proj.bias, bit_attention.v_proj.bias], dim=0)
            )
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
        module.o_proj = bit_attention.o_proj
        module.inner_attn_ln = bit_attention.inner_attn_ln
        if bit_attention.config.rope_scaling is None:
            module.rotary_emb = bit_attention.rotary_emb
        return module

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()
        qkv_states = self.qkv_proj(hidden_states)
        query_states, key_states, value_states = torch.split(
501
502
503
504
            qkv_states,
            [self.num_heads * self.head_dim, self.num_key_value_heads * self.head_dim, self.num_key_value_heads * self.head_dim],
            dim=-1,
        )
505
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
506
507
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
508
509
510
511
512
513
514
515

        past_key_value = getattr(self, "past_key_value", past_key_value)
        cos, sin = self.rotary_emb(value_states, position_ids)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
516
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
517
518
519
520

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

521
        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
522
523

        if attention_mask is not None:  # no matter the length, we just slice it
524
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
525
526
527
            attn_weights = attn_weights + causal_mask

        # upcast attention to fp32
528
529
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
530
531
532
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
533
            raise ValueError(f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is {attn_output.size()}")
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

        attn_output = attn_output.transpose(1, 2).contiguous()

        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        attn_output = self.inner_attn_ln(attn_output)
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class BitnetFlashAttention2(BitnetAttention):
    """
    Bitnet flash attention module. This module inherits from `BitnetAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
        # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
        # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        output_attentions = False

        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        # Flash attention requires the input to have the shape
        # batch_size x seq_length x head_dim x hidden_dim
        # therefore we just need to keep the original shape
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
586
587
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
588
589
590
591
592
593
594
595
596

        cos, sin = self.rotary_emb(value_states, position_ids)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

        past_key_value = getattr(self, "past_key_value", past_key_value)

        if past_key_value is not None:
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
597
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

        # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
        # to be able to avoid many of these transpose/reshape/view.
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        dropout_rate = self.attention_dropout if self.training else 0.0

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in the correct dtype just to be sure everything works as expected.
        # This might slowdown training & inference so it is recommended to not cast the LayerNorms
        # in fp32. (BitnetRMSNorm handles it correctly)

        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
626
627
                f" {target_dtype}."
            )
628
629
630
631
632

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

633
        attn_output = self._flash_attention_forward(query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate)
634
635
636
637
638
639
640
641
642
643

        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
        attn_output = self.inner_attn_ln(attn_output)
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value

644
645
646
    def _flash_attention_forward(
        self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
    ):
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
        """
        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
        first unpad the input, then computes the attention scores and pad the final attention scores.

        Args:
            query_states (`torch.Tensor`):
                Input query states to be passed to Flash Attention API
            key_states (`torch.Tensor`):
                Input key states to be passed to Flash Attention API
            value_states (`torch.Tensor`):
                Input value states to be passed to Flash Attention API
            attention_mask (`torch.Tensor`):
                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
                position of padding tokens and 1 for the position of non-padding tokens.
            dropout (`float`):
                Attention dropout
            softmax_scale (`float`, *optional*):
                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
        """
        if not self._flash_attn_uses_top_left_mask:
            causal = self.is_causal
        else:
            # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in BitnetFlashAttention2 __init__.
            causal = self.is_causal and query_length != 1

        # Contains at least one padding token in the sequence
        if attention_mask is not None:
            batch_size = query_states.shape[0]
            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
676
677
                query_states, key_states, value_states, attention_mask, query_length
            )
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            attn_output_unpad = flash_attn_varlen_func(
                query_states,
                key_states,
                value_states,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_in_batch_q,
                max_seqlen_k=max_seqlen_in_batch_k,
                dropout_p=dropout,
                softmax_scale=softmax_scale,
                causal=causal,
            )

            attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
        else:
697
            attn_output = flash_attn_func(query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal)
698
699
700
701
702
703
704

        return attn_output

    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape

705
706
        key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k)
        value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k)
707
        if query_length == kv_seq_len:
708
            query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k)
709
710
711
712
713
714
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
715
716
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
717
718
719
720
721
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
722
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )


LLAMA_ATTENTION_CLASSES = {
    "eager": BitnetAttention,
    "flash_attention_2": BitnetFlashAttention2,
}


class BitnetDecoderLayer(nn.Module):
    def __init__(self, config: BitnetConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size

745
        self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778

        self.mlp = BitnetMLP(config)
        self.input_layernorm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*):
                attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
                query_sequence_length, key_sequence_length)` if default attention is used.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`",
779
780
                stacklevel=2,
            )
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


LLAMA_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`BitnetConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
    LLAMA_START_DOCSTRING,
)
class BitnetPreTrainedModel(PreTrainedModel):
    config_class = BitnetConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["BitnetDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn_2 = True
    _supports_sdpa = False
    _supports_cache_class = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _setup_cache(self, cache_cls, max_batch_size, max_cache_len: Optional[int] = None):
        if self.config._attn_implementation == "flash_attention_2" and cache_cls == StaticCache:
            raise ValueError(
                "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
                "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
            )

        for layer in self.model.layers:
            device = layer.input_layernorm.weight.device
            if hasattr(self.config, "_pre_quantization_dtype"):
                dtype = self.config._pre_quantization_dtype
            else:
                dtype = layer.self_attn.o_proj.weight.dtype
871
            layer.self_attn.past_key_value = cache_cls(self.config, max_batch_size, max_cache_len, device=device, dtype=dtype)
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

    def _reset_cache(self):
        for layer in self.model.layers:
            layer.self_attn.past_key_value = None


LLAMA_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`BitnetTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`BitnetTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
            Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
            returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.

            Two formats are allowed:
            - a [`~cache_utils.Cache`] instance;
            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
            cache format.

            The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
            legacy cache format will be returned.

            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
            of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
            the complete sequence length.
"""


@add_start_docstrings(
    "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
    LLAMA_START_DOCSTRING,
)
class BitnetModel(BitnetPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`BitnetDecoderLayer`]

    Args:
        config: BitnetConfig
    """

    def __init__(self, config: BitnetConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
970
        self.layers = nn.ModuleList([BitnetDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
        self.norm = BitnetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
998
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
999
1000
1001
1002
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if (input_ids is None) ^ (inputs_embeds is not None):
1003
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one")
1004
1005

        if self.gradient_checkpointing and self.training and use_cache:
1006
            logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.")
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        past_seen_tokens = 0
        if use_cache and not isinstance(past_key_values, StaticCache):
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            past_seen_tokens = past_key_values.get_seq_length()

        if cache_position is None:
            if isinstance(past_key_values, StaticCache):
                raise ValueError("cache_position is a required argument when using StaticCache.")
1020
            cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device)
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)

        # embed positions
        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                    cache_position,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
1077
            next_cache = next_decoder_cache.to_legacy_cache() if isinstance(next_decoder_cache, Cache) else next_decoder_cache
1078
        if not return_dict:
1079
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

    # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
    # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
    # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
    # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
    def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        if hasattr(self.layers[0].self_attn, "past_key_value"):  # static cache
            target_length = self.config.max_position_embeddings
        else:  # dynamic cache
1103
1104
1105
            target_length = attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else cache_position[-1] + 1

        causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
1106
1107
1108
1109
1110
1111
1112
1113
        if sequence_length != 1:
            causal_mask = torch.triu(causal_mask, diagonal=1)
        causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
        if attention_mask is not None:
            causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
            if attention_mask.dim() == 2:
                mask_length = attention_mask.shape[-1]
1114
1115
                padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
                causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
1116
1117
1118
1119
1120
1121
1122
1123
1124
            elif attention_mask.dim() == 4:
                # backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
                # cache. In that case, the 4D attention mask attends to the newest tokens only.
                if attention_mask.shape[-2] < cache_position[0] + sequence_length:
                    offset = cache_position[0]
                else:
                    offset = 0
                mask_shape = attention_mask.shape
                mask_slice = (attention_mask.eq(0.0)).to(dtype=dtype) * min_dtype
1125
                causal_mask[: mask_shape[0], : mask_shape[1], offset : mask_shape[2] + offset, : mask_shape[3]] = mask_slice
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

        return causal_mask


class BitnetForCausalLM(BitnetPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = BitnetModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.quantized = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import LlamaTokenizer, LlamaForCausalLM

        >>> model = LlamaForCausalLM.from_pretrained("meta-llama/Bitnet-2-7b-hf")
        >>> tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Bitnet-2-7b-hf")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1202
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

1248
1249
1250
    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
    ):
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
        # With static cache, the `past_key_values` is None
        # TODO joao: standardize interface for the different Cache classes and remove of this if
        has_static_cache = False
        if past_key_values is None:
            past_key_values = getattr(self.model.layers[0].self_attn, "past_key_value", None)
            has_static_cache = past_key_values is not None

        past_length = 0
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
1261
                past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
1262
1263
                max_cache_length = (
                    torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
1264
1265
1266
1267
                    if past_key_values.get_max_length() is not None
                    else None
                )
                cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
            # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1278
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1279
1280
1281
1282
1283
1284
1285
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1286
            if max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length:
1287
1288
                attention_mask = attention_mask[:, -max_cache_length:]

Gabriel Wu's avatar
Gabriel Wu committed
1289
        position_ids = kwargs.get("position_ids")
1290
1291
1292
1293
1294
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
1295
                position_ids = position_ids[:, -input_ids.shape[1] :]
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
            # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
            # TODO: use `next_tokens` directly instead.
            model_inputs = {"input_ids": input_ids.contiguous()}

        input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
        if cache_position is None:
1308
            cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1309
1310
1311
1312
1313
1314
        else:
            cache_position = cache_position[-input_length:]

        if has_static_cache:
            past_key_values = None

1315
1316
1317
1318
1319
1320
1321
1322
1323
        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
1324
1325
1326
1327
1328
1329
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
1330
            reordered_past += (tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),)
1331
1332
1333
1334
        return reordered_past

    @staticmethod
    def recursive_set(model, name, attr):
1335
1336
1337
        """
        set layers.25.mlp.up_proj to attr
        """
1338

1339
        names = name.split(".")
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
        obj = model
        for n in names[:-1]:
            obj = getattr(obj, n)
        setattr(obj, names[-1], attr)

    def quantize(self, fuse_qkv=True, fuse_gateup=True):
        for name, module in self.model.named_modules():
            # if is bitnet layer
            if fuse_qkv and isinstance(module, BitnetAttention):
                # create quantized version of the layer
                print("Replacing BitnetAttention", name)
                bitnet_attenion_qkv_fused = BitnetAttentionQKVFused.from_bit_attention(module)
                self.recursive_set(self.model, name, bitnet_attenion_qkv_fused)
            if fuse_gateup and isinstance(module, BitnetMLP):
                # create quantized version of the layer
                print("Replacing BitnetMLP", name)
                bitnet_mlp_fused = BitnetMLPFuseGateUp.from_bit_mlp(module)
                self.recursive_set(self.model, name, bitnet_mlp_fused)
        for name, module in self.model.named_modules():
            # if is bitnet layer
            if isinstance(module, BitLinear):
                # create quantized version of the layer
                print("Quantizing module", name)
                if name.endswith(".qkv_proj"):
                    bitblas_linear = BitLinearBitBLAS.from_bit_linear(module, weight_group=3)
                elif name.endswith(".gate_up_proj"):
                    bitblas_linear = BitLinearBitBLAS.from_bit_linear(module, weight_group=2)
                else:
                    bitblas_linear = BitLinearBitBLAS.from_bit_linear(module)
                print("Replacing module", name, "with a quantized version")
                self.recursive_set(self.model, name, bitblas_linear)
        self.quantized = True

    def _post_process_weights(self):
        for name, module in self.model.named_modules():
            if hasattr(module, "post_process_weights"):
                print("Post processing weights for module", name)
                module.post_process_weights()

    def _replace_weight_param_with_qweight(self):
        for name, module in self.model.named_modules():
            if hasattr(module, "replace_weight_param_with_qweight"):
                print("Replacing weight param with qweight for module", name)
                module.replace_weight_param_with_qweight()

    @classmethod
    def from_quantized(
        cls,
        model_name_or_path: Optional[str],
        trust_remote_code: bool = False,
        **kwargs,
    ):
        """load quantized model from local disk"""
        # Parameters related to loading from Hugging Face Hub
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", "")
        commit_hash = kwargs.pop("_commit_hash", None)

        cached_file_kwargs = {
            "cache_dir": cache_dir,
            "force_download": force_download,
            "proxies": proxies,
            "resume_download": resume_download,
            "local_files_only": local_files_only,
            "use_auth_token": use_auth_token,
            "revision": revision,
            "subfolder": subfolder,
            "_raise_exceptions_for_missing_entries": False,
            "_commit_hash": commit_hash,
        }
        # == step1: prepare configs and file names == #
        config: BitnetConfig = BitnetConfig.from_pretrained(
            model_name_or_path,
            trust_remote_code=trust_remote_code,
            **cached_file_kwargs,
        )
        # load quantize config
        quantize_file = cached_file(model_name_or_path, "quantize_config.json")
        assert quantize_file is not None, "quantize config file not found"
        import json

        # get quantize format
        with open(quantize_file, "r") as f:
            quant_config = json.load(f)
        checkpoint_format = quant_config["checkpoint_format"]
        assert checkpoint_format in ["bitblas"], "quantize format not supported"
        fuse_qkv = quant_config.get("fuse_qkv", True)
        fuse_gateup = quant_config.get("fuse_gateup", True)

        import accelerate
1436

1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
        if checkpoint_format == "bitblas":
            model = cls(config)
            for name, module in model.named_modules():
                # if is bitnet layer
                if fuse_qkv and isinstance(module, BitnetAttention):
                    # create quantized version of the layer
                    print("Replacing BitnetAttention", name)
                    bitnet_attenion_qkv_fused = BitnetAttentionQKVFused.from_bit_attention(module)
                    model.recursive_set(model, name, bitnet_attenion_qkv_fused)
                if fuse_gateup and isinstance(module, BitnetMLP):
                    # create quantized version of the layer
                    print("Replacing BitnetMLP", name)
                    bitnet_mlp_fused = BitnetMLPFuseGateUp.from_bit_mlp(module)
                    model.recursive_set(model, name, bitnet_mlp_fused)
            for name, module in model.named_modules():
                if isinstance(module, BitLinear):
                    # create quantized version of the layer
                    print("Quantizing module", name)
                    bitblas_linear = BitLinearBitBLAS.from_bit_linear(module)
                    print("Replacing module", name, "with a quantized version")
                    model.recursive_set(model, name, bitblas_linear)
            accelerate.utils.modeling.load_checkpoint_in_model(
                model,
                checkpoint=model_name_or_path,
                offload_state_dict=True,
                offload_buffers=True,
            )
            return model


@add_start_docstrings(
    """
    The LLaMa Model transformer with a sequence classification head on top (linear layer).

    [`BitnetForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    """,
    LLAMA_START_DOCSTRING,
)
class BitnetForSequenceClassification(BitnetPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = BitnetModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1546
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
1560
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )


@add_start_docstrings(
    """
The Bitnet Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
    """,
    LLAMA_START_DOCSTRING,
)
class BitnetForQuestionAnswering(BitnetPreTrainedModel):
    base_model_prefix = "transformer"

    # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Bitnet
    def __init__(self, config):
        super().__init__(config)
        self.transformer = BitnetModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, 2)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.transformer.embed_tokens

    def set_input_embeddings(self, value):
        self.transformer.embed_tokens = value

    @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, QuestionAnsweringModelOutput]:
        r"""
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1631
            Labels for position (index) of the start of the labeled span for computing the token classification loss.
1632
1633
1634
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1635
            Labels for position (index) of the end of the labeled span for computing the token classification loss.
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1).contiguous()
        end_logits = end_logits.squeeze(-1).contiguous()

        total_loss = None
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1).to(start_logits.device)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1).to(end_logits.device)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions = start_positions.clamp(0, ignored_index)
            end_positions = end_positions.clamp(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

        if not return_dict:
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )