"docs/vscode:/vscode.git/clone" did not exist on "f964493274c3c839b2e27453cb70f179090cd027"
example_amd_flash_attn_bwd.py 21.8 KB
Newer Older
1
2
3
4
import torch
import torch.nn.functional as F
import tilelang
import tilelang.language as T
alex_xiao's avatar
alex_xiao committed
5
6
from tilelang.primitives.gemm.base import GemmWarpPolicy
import itertools
7
import argparse
alex_xiao's avatar
alex_xiao committed
8
9
10
from functools import partial
import numpy as np
import time
11
12


alex_xiao's avatar
alex_xiao committed
13
def ref_program(Q, K, V, is_causal, groups=1):
14
15
    assert Q.size(2) == K.size(2) * groups, f"Q heads {Q.size(2)} K heads {K.size(2)} groups {groups}"
    assert Q.size(2) == V.size(2) * groups, f"Q heads {Q.size(2)} V heads {V.size(2)} groups {groups}"
alex_xiao's avatar
alex_xiao committed
16
17
18
    dim = Q.size(-1)
    K_ref = K.repeat_interleave(groups, dim=2)
    V_ref = V.repeat_interleave(groups, dim=2)
19
    scores = torch.einsum("bqhd,bkhd->bhqk", Q, K_ref)
alex_xiao's avatar
alex_xiao committed
20
21
22
23
24
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
25
        scores = scores.masked_fill(mask == 0, float("-inf"))
alex_xiao's avatar
alex_xiao committed
26
    attention_weights = F.softmax(scores, dim=-1)
27
    output = torch.einsum("bhqk,bkhd->bqhd", attention_weights, V_ref)
alex_xiao's avatar
alex_xiao committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    lse = torch.logsumexp(scores, dim=-1).float()
    return output, lse


def get_fwd_configs():
    block_M = [32, 64, 128, 256]
    block_N = [32, 64, 128, 256]
    threads = [128, 256, 512]
    num_split_q = [64, 128, 256]
    num_stages = [0, 1]
    enable_rasterization = [True]
    k_pack = [2]
    panel_size = [7, 8, 9, 10]
    qk_coalesced_width = [8]
    v_coalesced_width = [4]

    valid_configs = []

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    for m, n, s, t, stages, r, k, p, qkw, vw in itertools.product(
        block_M, block_N, num_split_q, threads, num_stages, enable_rasterization, k_pack, panel_size, qk_coalesced_width, v_coalesced_width
    ):
        valid_configs.append(
            {
                "block_M": m,
                "block_N": n,
                "num_split_q": s,
                "threads": t,
                "num_stages": stages,
                "enable_rasterization": r,
                "k_pack": k,
                "panel_size": p,
                "qk_coalesced_width": qkw,
                "v_coalesced_width": vw,
            }
        )
alex_xiao's avatar
alex_xiao committed
63
64
65
66
    return valid_configs


@tilelang.autotune(configs=get_fwd_configs(), cache_input_tensors=True)
67
@tilelang.jit(out_idx=[3, 4])
alex_xiao's avatar
alex_xiao committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
def fast_flashattn(
    batch,
    heads,
    seq_len,
    dim,
    is_causal,
    groups,
    block_M: int,
    block_N: int,
    num_split_q: int,
    threads: int,
    num_stages: int,
    enable_rasterization: bool,
    k_pack: int,
    panel_size: int,
    qk_coalesced_width: int,
    v_coalesced_width: int,
):
86
    scale = (1.0 / dim) ** 0.5
87
    head_kv = heads // groups
alex_xiao's avatar
alex_xiao committed
88
89
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
90
91
92
    dtype = "float16"
    accum_dtype = "float"

alex_xiao's avatar
alex_xiao committed
93
94
95
    vec_size = qk_coalesced_width
    v_vec_size = v_coalesced_width

96
    @T.prim_func
alex_xiao's avatar
alex_xiao committed
97
    def main(
98
99
100
101
102
        Q: T.Tensor(q_shape, dtype),
        K: T.Tensor(kv_shape, dtype),
        V: T.Tensor(kv_shape, dtype),
        Output: T.Tensor(q_shape, dtype),
        LSE: T.Tensor([batch, heads, seq_len], accum_dtype),
103
    ):
alex_xiao's avatar
alex_xiao committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        with T.Kernel(num_split_q, batch * heads, threads=threads) as (b_split, byz_combined):
            T.use_swizzle(panel_size, enable=enable_rasterization)

            bz = byz_combined // heads
            by = byz_combined % heads

            num_q_blocks = T.ceildiv(seq_len, block_M)

            bx_loop_var = T.alloc_var("int32")
            bx_loop_var = b_split

            with T.While(bx_loop_var < num_q_blocks):
                acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
                m_i = T.alloc_fragment([block_M], accum_dtype)
                l_i = T.alloc_fragment([block_M], accum_dtype)

                T.fill(acc_o, 0)
                T.fill(m_i, -T.infinity(accum_dtype))
                T.fill(l_i, 0)

                current_bx = bx_loop_var
                q_block_offset = current_bx * block_M

                Q_shared = T.alloc_shared([block_M, dim], dtype)
                K_shared = T.alloc_shared([block_N, dim], dtype)
                V_shared = T.alloc_shared([block_N, dim], dtype)
                acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)

                acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
                m_prev = T.alloc_fragment([block_M], accum_dtype)
                scale_factor = T.alloc_fragment([block_M], accum_dtype)

136
                T.copy(Q[bz, q_block_offset : q_block_offset + block_M, by, :], Q_shared, coalesced_width=vec_size)
alex_xiao's avatar
alex_xiao committed
137

138
                loop_end_k = T.ceildiv(q_block_offset + block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N)
alex_xiao's avatar
alex_xiao committed
139
140
141
142
143
144

                row_sum = T.alloc_fragment([block_M], accum_dtype)

                for k in T.Pipelined(loop_end_k, num_stages=num_stages):
                    kv_idx = k * block_N

145
146
                    T.copy(K[bz, kv_idx : kv_idx + block_N, by // groups, :], K_shared, coalesced_width=vec_size)
                    T.copy(V[bz, kv_idx : kv_idx + block_N, by // groups, :], V_shared, coalesced_width=v_vec_size)
alex_xiao's avatar
alex_xiao committed
147
148
149

                    if is_causal:
                        for i, j in T.Parallel(block_M, block_N):
150
                            acc_s[i, j] = T.if_then_else(q_block_offset + i >= kv_idx + j, 0, -T.infinity(acc_s.dtype))
alex_xiao's avatar
alex_xiao committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
                    else:
                        T.clear(acc_s)
                    T.gemm(
                        Q_shared,
                        K_shared,
                        acc_s,
                        transpose_B=True,
                        k_pack=k_pack,
                        policy=GemmWarpPolicy.FullRow,
                    )

                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = acc_s[i, j] * scale

                    T.copy(m_i, m_prev)
                    T.reduce_max(acc_s, m_i, dim=1, clear=False)
167
168
                    for i in T.Parallel(block_M):
                        m_i[i] = T.max(m_i[i], m_prev[i])
alex_xiao's avatar
alex_xiao committed
169
170
171
172
173
174
175
176
177
178
179
180

                    for i in T.Parallel(block_M):
                        if m_prev[i] == -T.infinity(accum_dtype):
                            scale_factor[i] = 0.0
                        else:
                            scale_factor[i] = T.exp(m_prev[i] - m_i[i])

                        l_i[i] *= scale_factor[i]

                    for i, j in T.Parallel(block_M, dim):
                        acc_o[i, j] *= scale_factor[i]

181
                    for i, j in T.Parallel(block_M, block_N):
alex_xiao's avatar
alex_xiao committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
                        if acc_s[i, j] == -T.infinity(acc_s.dtype):
                            acc_s[i, j] = 0.0
                        else:
                            acc_s[i, j] = T.exp(acc_s[i, j] - m_i[i])

                    T.reduce_sum(acc_s, row_sum, dim=1)
                    for i in T.Parallel(block_M):
                        l_i[i] += row_sum[i]

                    T.copy(acc_s, acc_s_cast)

                    T.gemm(acc_s_cast, V_shared, acc_o, policy=GemmWarpPolicy.FullRow)

                l_inv = T.alloc_fragment([block_M], accum_dtype)
196
                for i in T.Parallel(block_M):
alex_xiao's avatar
alex_xiao committed
197
198
199
200
201
202
                    safe_l = T.if_then_else(l_i[i] > 1e-6, l_i[i], 1.0)
                    l_inv[i] = 1.0 / safe_l

                for i, j in T.Parallel(block_M, dim):
                    Output[bz, q_block_offset + i, by, j] = acc_o[i, j] * l_inv[i]

203
                for i in T.Parallel(block_M):
alex_xiao's avatar
alex_xiao committed
204
                    if q_block_offset + i < seq_len:
205
                        lse_val = T.if_then_else(l_i[i] > 0, T.log(l_i[i]) + m_i[i], -T.infinity(accum_dtype))
alex_xiao's avatar
alex_xiao committed
206
207
208
209
210
211
                        LSE[bz, by, q_block_offset + i] = lse_val

                bx_loop_var = current_bx + num_split_q

    return main

212

alex_xiao's avatar
alex_xiao committed
213
214
215
216
217
218
219
220
221
def get_bwd_configs():
    block_M = [16, 32, 64, 128, 256]
    block_N = [16, 32, 64, 128, 256]
    threads = [64, 128, 256, 512, 1024]
    num_stages = [0, 1, 2]
    enable_rasterization = [True]
    panel_size = [7, 8, 9, 10]

    configs = []
222
223
224
225
226
227
228
229
230
231
232
    for m, n, stages, t, r, p in itertools.product(block_M, block_N, num_stages, threads, enable_rasterization, panel_size):
        configs.append(
            {
                "block_M": m,
                "block_N": n,
                "num_stages": stages,
                "threads": t,
                "enable_rasterization": r,
                "panel_size": p,
            }
        )
alex_xiao's avatar
alex_xiao committed
233
234

    return configs
235
236
237


@tilelang.jit(out_idx=[2])
alex_xiao's avatar
alex_xiao committed
238
def flashattn_bwd_preprocess(batch, heads, seq_len, dim):
239
240
    dtype = "float16"
    accum_dtype = "float"
alex_xiao's avatar
alex_xiao committed
241
    shape = [batch, seq_len, heads, dim]
242
243
244
    blk = 32

    @T.prim_func
245
    def flash_bwd_prep(O: T.Tensor(shape, dtype), dO: T.Tensor(shape, dtype), Delta: T.Tensor([batch, heads, seq_len], accum_dtype)):
alex_xiao's avatar
alex_xiao committed
246
        with T.Kernel(batch, heads, T.ceildiv(seq_len, blk)) as (bz, bx, by):
247
248
249
250
251
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
alex_xiao's avatar
alex_xiao committed
252
            for k in range(T.ceildiv(dim, blk)):
253
254
                T.copy(O[bz, by * blk : (by + 1) * blk, bx, k * blk : (k + 1) * blk], o)
                T.copy(dO[bz, by * blk : (by + 1) * blk, bx, k * blk : (k + 1) * blk], do)
255
256
257
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
258
            T.copy(delta, Delta[bz, bx, by * blk : (by + 1) * blk])
259
260
261
262

    return flash_bwd_prep


alex_xiao's avatar
alex_xiao committed
263
@tilelang.autotune(configs=get_bwd_configs(), cache_input_tensors=True)
264
@tilelang.jit
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
def flashattn_bwd(
    batch,
    heads,
    seq_len,
    dim,
    is_causal,
    groups,
    block_M: int,
    block_N: int,
    num_stages: int,
    threads: int,
    enable_rasterization: bool,
    panel_size: int,
):
    sm_scale = (1.0 / dim) ** 0.5
280
    head_kv = heads // groups
alex_xiao's avatar
alex_xiao committed
281
282
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
283
284
285
286
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
287
288
289
290
291
292
293
294
295
296
297
    def flash_bwd_kernel(
        Q: T.Tensor(q_shape, dtype),
        K: T.Tensor(kv_shape, dtype),
        V: T.Tensor(kv_shape, dtype),
        dO: T.Tensor(q_shape, dtype),
        lse: T.Tensor([batch, heads, seq_len], accum_dtype),
        Delta: T.Tensor([batch, heads, seq_len], accum_dtype),
        dQ: T.Tensor(q_shape, accum_dtype),
        dK: T.Tensor(kv_shape, accum_dtype),
        dV: T.Tensor(kv_shape, accum_dtype),
    ):
alex_xiao's avatar
alex_xiao committed
298
299
300
301
302
303
304
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
            T.use_swizzle(panel_size, enable=enable_rasterization)

            K_shared = T.alloc_shared([block_M, dim], dtype)
            V_shared = T.alloc_shared([block_M, dim], dtype)
            q_shared = T.alloc_shared([block_N, dim], dtype)
            do_shared = T.alloc_shared([block_N, dim], dtype)
305
            lse_shared = T.alloc_shared([block_N], accum_dtype)
alex_xiao's avatar
alex_xiao committed
306
307
308
309
310
311
312
313
314
315
316
            delta_shared = T.alloc_shared([block_N], accum_dtype)
            ds_shared = T.alloc_shared([block_M, block_N], dtype)

            p_cast = T.alloc_fragment([block_M, block_N], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            P_acc = T.alloc_fragment([block_M, block_N], accum_dtype)
            dP = T.alloc_fragment([block_M, block_N], accum_dtype)

            dv = T.alloc_fragment([block_M, dim], accum_dtype)
            dk = T.alloc_fragment([block_M, dim], accum_dtype)
            dq = T.alloc_fragment([block_N, dim], accum_dtype)
317

318
319
            T.copy(K[bz, by * block_M : (by + 1) * block_M, bx // groups, :], K_shared)
            T.copy(V[bz, by * block_M : (by + 1) * block_M, bx // groups, :], V_shared)
320
321
            T.clear(dv)
            T.clear(dk)
alex_xiao's avatar
alex_xiao committed
322

323
324
            loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
            loop_ed = T.ceildiv(seq_len, block_N)
alex_xiao's avatar
alex_xiao committed
325
326

            for k in T.Pipelined(loop_st, loop_ed, num_stages=num_stages):
327
                T.copy(Q[bz, k * block_N : (k + 1) * block_N, bx, :], q_shared)
328
                T.clear(qkT)
alex_xiao's avatar
alex_xiao committed
329
330
331

                T.gemm(K_shared, q_shared, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

332
                T.copy(lse[bz, bx, k * block_N : (k + 1) * block_N], lse_shared)
alex_xiao's avatar
alex_xiao committed
333

334
                for i, j in T.Parallel(block_M, block_N):
alex_xiao's avatar
alex_xiao committed
335
336
                    P_acc[i, j] = T.exp(qkT[i, j] * sm_scale - lse_shared[j])

337
338
                if is_causal:
                    for i, j in T.Parallel(block_M, block_N):
339
                        P_acc[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, P_acc[i, j], 0.0)
alex_xiao's avatar
alex_xiao committed
340

341
                T.copy(dO[bz, k * block_N : (k + 1) * block_N, bx, :], do_shared)
alex_xiao's avatar
alex_xiao committed
342
343
344
345
346
347
                T.clear(dP)

                T.gemm(V_shared, do_shared, dP, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

                T.copy(P_acc, p_cast)
                T.gemm(p_cast, do_shared, dv, policy=T.GemmWarpPolicy.FullRow)
348

349
                T.copy(Delta[bz, bx, k * block_N : (k + 1) * block_N], delta_shared)
350
351

                for i, j in T.Parallel(block_M, block_N):
alex_xiao's avatar
alex_xiao committed
352
                    p_cast[i, j] = P_acc[i, j] * (dP[i, j] - delta_shared[j]) * sm_scale
353

alex_xiao's avatar
alex_xiao committed
354
355
356
                T.gemm(p_cast, q_shared, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(p_cast, ds_shared)
357
                T.clear(dq)
alex_xiao's avatar
alex_xiao committed
358
359
                T.gemm(ds_shared, K_shared, dq, transpose_A=True)
                for i, j in T.Parallel(block_N, dim):
360
                    T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])
361

alex_xiao's avatar
alex_xiao committed
362
            for i, j in T.Parallel(block_M, dim):
363
364
365
                T.atomic_add(dV[bz, by * block_M + i, bx // groups, j], dv[i, j])
                T.atomic_add(dK[bz, by * block_M + i, bx // groups, j], dk[i, j])

alex_xiao's avatar
alex_xiao committed
366
    return flash_bwd_kernel
367
368


alex_xiao's avatar
alex_xiao committed
369
370
371
372
373
374
375
376
377
378
379
@tilelang.jit(out_idx=[1])
def flashattn_bwd_postprocess(batch, heads, seq_len, dim):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim]
    blk = 64

    @T.prim_func
    def flash_bwd_post(dQ_in: T.Tensor(shape, accum_dtype), dQ_out: T.Tensor(shape, dtype)):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.copy(
380
381
                dQ_in[bz, bx * blk : (bx + 1) * blk, by, :],
                dQ_out[bz, bx * blk : (bx + 1) * blk, by, :],
alex_xiao's avatar
alex_xiao committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
            )

    return flash_bwd_post


def debug_tensor_comparison(tensor1, tensor2, name, rtol=1e-3, atol=1e-3):
    print(f"\n=== {name} Comparison ===")
    print(f"Shape: {tensor1.shape} vs {tensor2.shape}")
    print(f"Data type: {tensor1.dtype} vs {tensor2.dtype}")
    print(f"Device: {tensor1.device} vs {tensor2.device}")

    diff = torch.abs(tensor1 - tensor2)
    max_diff = diff.max().item()
    mean_diff = diff.mean().item()
    std_diff = diff.std().item()

    print(f"Max difference: {max_diff:.6f}")
    print(f"Mean difference: {mean_diff:.6f}")
    print(f"Difference std: {std_diff:.6f}")

    if max_diff > atol:
        max_idx = torch.argmax(diff)
        max_idx = np.unravel_index(max_idx.cpu().numpy(), tensor1.shape)
        print(f"Max difference position: {max_idx}")
        print(f"Value1: {tensor1[max_idx].item():.6f}, Value2: {tensor2[max_idx].item():.6f}")

    nan_count1 = torch.isnan(tensor1).sum().item()
    nan_count2 = torch.isnan(tensor2).sum().item()
    inf_count1 = torch.isinf(tensor1).sum().item()
    inf_count2 = torch.isinf(tensor2).sum().item()

    print(f"NaN count: {nan_count1} vs {nan_count2}")
    print(f"Inf count: {inf_count1} vs {inf_count2}")

    relative_diff = diff / (torch.abs(tensor2) + 1e-8)
    max_relative_diff = relative_diff.max().item()
    mean_relative_diff = relative_diff.mean().item()

    print(f"Max relative difference: {max_relative_diff:.6f}")
    print(f"Mean relative difference: {mean_relative_diff:.6f}")

    close = torch.allclose(tensor1, tensor2, rtol=rtol, atol=atol)
    print(f"Within tolerance (rtol={rtol}, atol={atol}): {close}")

    return close, max_diff, mean_diff


def benchmark_function(func, *args, warmup=10, repeat=100):
    for _ in range(warmup):
        func(*args)

    if torch.cuda.is_available():
        torch.cuda.synchronize()

    times = []
    for _ in range(repeat):
        start = time.time()
        func(*args)
        if torch.cuda.is_available():
            torch.cuda.synchronize()
        end = time.time()
        times.append((end - start) * 1000)

    return np.median(times)


448
def main(batch: int = 1, heads: int = 8, seq_len: int = 4096, dim: int = 128, is_causal: bool = False, groups: int = 1):
alex_xiao's avatar
alex_xiao committed
449
450
451
452
453
454
    device = "cuda"
    dtype = torch.float16

    torch.manual_seed(42)
    torch.cuda.manual_seed(42)

455
    print(f"Test configuration: batch={batch}, heads={heads}, seq_len={seq_len}, dim={dim}, is_causal={is_causal}, groups={groups}")
alex_xiao's avatar
alex_xiao committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

    flops_per_gemm = 2.0 * batch * heads * seq_len * seq_len * dim
    total_flops = 5 * flops_per_gemm

    print(f"Total FLOPs: {total_flops / 1e12:.2f} TFlops")

    q = torch.randn(batch, seq_len, heads, dim, device=device, dtype=dtype)
    k = torch.randn(batch, seq_len, heads // groups, dim, device=device, dtype=dtype)
    v = torch.randn(batch, seq_len, heads // groups, dim, device=device, dtype=dtype)
    dO = torch.randn_like(q)

    print("Starting autotuning for Fast FlashAttention-V2 Forward Pass...")
    fwd_kernel = fast_flashattn(batch, heads, seq_len, dim, is_causal, groups)
    if fwd_kernel is None or fwd_kernel.config is None:
        print("Forward pass auto-tuning failed.")
        return
    print(f"Autotuning finished. Best Forward Configuration: {fwd_kernel.config}")

    ref_program_processed = partial(ref_program, is_causal=is_causal, groups=groups)

    profiler = fwd_kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Normal)

    print("Verifying correctness...")
    profiler.assert_allclose(ref_program_processed, rtol=0.01, atol=0.01)
    print("Forward pass is correct.")

    o_tl, lse_tl = fwd_kernel(q, k, v)

    bwd_prep = flashattn_bwd_preprocess(batch, heads, seq_len, dim)
    delta_tl = bwd_prep(o_tl, dO)

    print("\nStarting FlashAttention-V2 backward pass autotuning...")
    bwd_kernel = flashattn_bwd(batch, heads, seq_len, dim, is_causal, groups)
    if bwd_kernel is None or bwd_kernel.config is None:
        print("Backward pass autotuning failed.")
        return
    print(f"Autotuning completed. Best backward pass configuration: {bwd_kernel.config}")

    dQ_accum = torch.zeros_like(q, dtype=torch.float32)
    dK_tl = torch.zeros_like(k, dtype=torch.float32)
    dV_tl = torch.zeros_like(v, dtype=torch.float32)

    bwd_kernel(q, k, v, dO, lse_tl, delta_tl, dQ_accum, dK_tl, dV_tl)

    post_kernel = flashattn_bwd_postprocess(batch, heads, seq_len, dim)
    dQ_tl = post_kernel(dQ_accum)

    q_ref = q.clone().detach().requires_grad_()
    k_ref = k.clone().detach().requires_grad_()
    v_ref = v.clone().detach().requires_grad_()

    o_ref, _ = ref_program(q_ref, k_ref, v_ref, is_causal, groups)
    o_ref.backward(dO)

    print("Verifying backward pass correctness...")
511
    dq_close, dq_max_diff, dq_mean_diff = debug_tensor_comparison(dQ_tl, q_ref.grad, "dQ", rtol=0.05, atol=0.05)
alex_xiao's avatar
alex_xiao committed
512
513
514
515
516
    if dq_close:
        print("dQ is correct.")
    else:
        print("dQ mismatch detected.")

517
    dk_close, dk_max_diff, dk_mean_diff = debug_tensor_comparison(dK_tl.to(torch.float16), k_ref.grad, "dK", rtol=0.05, atol=0.05)
alex_xiao's avatar
alex_xiao committed
518
519
520
521
522
    if dk_close:
        print("dK is correct.")
    else:
        print("dK mismatch detected.")

523
    dv_close, dv_max_diff, dv_mean_diff = debug_tensor_comparison(dV_tl.to(torch.float16), v_ref.grad, "dV", rtol=0.05, atol=0.05)
alex_xiao's avatar
alex_xiao committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
    if dv_close:
        print("dV is correct.")
    else:
        print("dV mismatch detected.")

    print("\n=== Performance Benchmarking ===")

    def run_reference_fwd_bwd():
        q_ref_bench = q.clone().detach().requires_grad_()
        k_ref_bench = k.clone().detach().requires_grad_()
        v_ref_bench = v.clone().detach().requires_grad_()

        o_ref_bench, _ = ref_program(q_ref_bench, k_ref_bench, v_ref_bench, is_causal, groups)

        o_ref_bench.backward(dO)

        if torch.cuda.is_available():
            torch.cuda.synchronize()

    ref_latency = benchmark_function(run_reference_fwd_bwd, warmup=10, repeat=100)
544
    print(f"Reference PyTorch Forward+Backward: {ref_latency:.2f} ms | {total_flops / ref_latency * 1e-9:.2f} TFlops")
alex_xiao's avatar
alex_xiao committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

    def run_complete_fwd_bwd():
        o_tl_bench, lse_tl_bench = fwd_kernel(q, k, v)

        delta_tl_bench = bwd_prep(o_tl_bench, dO)

        dQ_bench = torch.zeros_like(q, dtype=torch.float32)
        dK_bench = torch.zeros_like(k, dtype=torch.float32)
        dV_bench = torch.zeros_like(v, dtype=torch.float32)
        bwd_kernel(q, k, v, dO, lse_tl_bench, delta_tl_bench, dQ_bench, dK_bench, dV_bench)

        post_kernel(dQ_bench)

        if torch.cuda.is_available():
            torch.cuda.synchronize()

    tile_latency = benchmark_function(run_complete_fwd_bwd, warmup=10, repeat=100)
    print(
        f"Complete Flash Attention V2 Forward+Backward (Tile-lang): {tile_latency:.2f} ms | {total_flops / tile_latency * 1e-9:.2f} TFlops"
    )

    speedup = ref_latency / tile_latency
    print(f"Speedup: {speedup:.2f}x")

    print("Forward output: Passed")
    print(f"dQ: {'Passed' if dq_close else 'Failed'} (Max diff: {dq_max_diff:.6f})")
    print(f"dK: {'Passed' if dk_close else 'Failed'} (Max diff: {dk_max_diff:.6f})")
    print(f"dV: {'Passed' if dv_close else 'Failed'} (Max diff: {dv_max_diff:.6f})")

    if all([dq_close, dk_close, dv_close]):
        print("All checks passed!")
    else:
        print("Some checks failed, may need further debugging.")
578
579
580
581


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
582
583
584
585
586
587
    parser.add_argument("--batch", type=int, default=1, help="batch size")
    parser.add_argument("--heads", type=int, default=8, help="heads")
    parser.add_argument("--seq_len", type=int, default=1024, help="sequence length")
    parser.add_argument("--dim", type=int, default=64, help="dim")
    parser.add_argument("--is_causal", action="store_true", help="causal")
    parser.add_argument("--groups", type=int, default=1, help="groups")
588
    args = parser.parse_args()
alex_xiao's avatar
alex_xiao committed
589
590

    main(args.batch, args.heads, args.seq_len, args.dim, args.is_causal, args.groups)