example_gemm_sp.py 5.2 KB
Newer Older
1
2
3
4
5
6
7
# Copyright (c) Tile-AI Corporation.
# Licensed under the MIT License.
import argparse

import tilelang
import tilelang.language as T

8
from tilelang.layout import make_cutlass_metadata_layout
9
from tilelang.utils.sparse import compress, randn_semi_sparse
10
11
12
13
14
15
16
from tilelang.contrib import nvcc
from triton.testing import do_bench

import torch

arch = nvcc.get_target_compute_version()

17
DEFAULT_CONFIG = {  # take best config from autotune script
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    "4090": {
        'float': {
            'block_M': 128,
            'block_N': 64,
            'block_K': 64,
            'num_stages': 1,
            'thread_num': 128,
            'policy': T.GemmWarpPolicy.Square,
            'enable_rasterization': True
        },
        'float16': {
            'block_M': 256,
            'block_N': 128,
            'block_K': 64,
            'num_stages': 2,
            'thread_num': 128,
            'policy': T.GemmWarpPolicy.Square,
            'enable_rasterization': True
        }
    },
    "h20": {
        'float': {
            'block_M': 128,
            'block_N': 64,
            'block_K': 128,
            'num_stages': 3,
            'thread_num': 128,
            'policy': T.GemmWarpPolicy.Square,
            'enable_rasterization': True
        },
        'float16': {
            'block_M': 128,
            'block_N': 64,
            'block_K': 128,
            'num_stages': 3,
            'thread_num': 128,
            'policy': T.GemmWarpPolicy.Square,
            'enable_rasterization': True
        }
    }
}

60
61
ARCH_INFO = {"8.0": (16, "int16"), "8.9": (16, "int16"), "9.0": (8, "uint8")}

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

@tilelang.jit(out_idx=[-1])
def matmul_sp_fp16(M, N, K, accum_dtype, block_M, block_N, block_K, num_stages, thread_num, policy,
                   enable_rasterization):
    e_factor, e_dtype = ARCH_INFO[arch]

    @T.prim_func
    def gemm_sp_fp16(
            A_sparse: T.Tensor((M, K // 2), 'float16'),
            E: T.Tensor((M, K // e_factor), e_dtype),
            B: T.Tensor((K, N), 'float16'),
            C: T.Tensor((M, N), accum_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=thread_num) as (bx, by):
            A_shared = T.alloc_shared((block_M, block_K // 2), 'float16')
            E_shared = T.alloc_shared((block_M, block_K // e_factor), e_dtype)
            B_shared = T.alloc_shared((block_K, block_N), 'float16')
            C_shared = T.alloc_shared((block_M, block_N), accum_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)

            T.clear(C_local)
            T.disable_warp_group_reg_alloc()
            T.use_swizzle(panel_size=10, enable=enable_rasterization)
            T.annotate_layout({
                E:
87
88
                    make_cutlass_metadata_layout(
                        E, mma_dtype="float16", block_k=block_K, arch=arch),
89
                E_shared:
90
91
                    make_cutlass_metadata_layout(
                        E_shared, mma_dtype="float16", block_k=block_K, arch=arch),
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
            })
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(A_sparse[by * block_M, k * block_K // 2], A_shared)
                T.copy(E[by * block_M, k * block_K // e_factor], E_shared)
                T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm_sp(A_shared, E_shared, B_shared, C_local, False, False, policy=policy)

            T.copy(C_local, C_shared)
            T.copy(C_shared, C[by * block_M, bx * block_N])

    return gemm_sp_fp16


def main():
    parser = argparse.ArgumentParser(description="Autotuned MatMul Benchmark")
    parser.add_argument("--m", type=int, default=16384, help="Matrix dimension M")
    parser.add_argument("--n", type=int, default=16384, help="Matrix dimension N")
    parser.add_argument("--k", type=int, default=16384, help="Matrix dimension K")
    parser.add_argument(
        "--accum_dtype",
        type=str,
        default="float",
        choices=["float", "float16"],
        help="Accumulation datatype")
116
    parser.add_argument("--cfg", type=str, choices=["4090", "h20"], default="4090")
117
118
    args = parser.parse_args()
    kernel = matmul_sp_fp16(args.m, args.n, args.k, args.accum_dtype,
119
                            **DEFAULT_CONFIG[args.cfg][args.accum_dtype])
120

121
    a = randn_semi_sparse(args.m, args.k, device='cuda', dtype=torch.half)
122
123
124
125
126
    b = torch.randn(args.k, args.n, device='cuda', dtype=torch.half)

    a_sparse, e = compress(
        a,
        transposed=False,
127
        block_k=DEFAULT_CONFIG[args.cfg][args.accum_dtype]['block_K'],
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        arch=arch)
    c = kernel(a_sparse, e, b)

    ref_c = a @ b

    assert not c.isnan().any(), "Reference result contains NaNs, please report an issue"
    torch.testing.assert_close(c, ref_c.to(c.dtype), rtol=1e-2, atol=1e-2)
    print(f"Precision check passed. diff: {(c - ref_c).abs().mean()}")

    latency = do_bench(lambda: kernel(a_sparse, e, b))
    ref_latency = do_bench(lambda: a @ b)

    total_flops = 2 * args.m * args.n * args.k
    tflops = total_flops / latency / 1e9
    ref_tflops = total_flops / ref_latency / 1e9
    print(f"Sparse TFLOPS: {tflops:.2f}, Latency: {latency/1e3} s")
    print(f"Reference TFLOPS: {ref_tflops:.2f}, Latency: {ref_latency/1e3:} s")


if __name__ == "__main__":
    main()