gemm_sm89.h 20.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
#pragma once

#include "common.h"
#include "cuda_fp8.h"
#include <cute/algorithm/clear.hpp>
#include <cute/arch/mma_sm80.hpp>
#include <cute/atom/mma_atom.hpp>
#include <cute/atom/mma_traits.hpp>
#include <cute/underscore.hpp>

namespace cute {

template <typename A_type, typename B_type, typename C_type, int num_warp_m,
14
          int num_warp_n, int N>
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
struct DispatchInstruction;

using _X = Underscore;

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 890))

struct SM89_16x8x32_F32F8F8F32_E4M3_TN {
  using DRegisters = float[4];
  using ARegisters = uint32_t[4];
  using BRegisters = uint32_t[2];
  using CRegisters = float[4];

  CUTE_HOST_DEVICE static void fma(float &d0, float &d1, float &d2, float &d3,
                                   uint32_t const &a0, uint32_t const &a1,
                                   uint32_t const &a2, uint32_t const &a3,
                                   uint32_t const &b0, uint32_t const &b1,
                                   float const &c0, float const &c1,
                                   float const &c2, float const &c3) {
    asm volatile("mma.sync.aligned.m16n8k32.row.col.f32.e4m3.e4m3.f32 "
                 "{%0,  %1,  %2,  %3},"
                 "{%4,  %5,  %6,  %7},"
                 "{%8,  %9},"
                 "{%10, %11, %12, %13};\n"
                 : "=f"(d0), "=f"(d1), "=f"(d2), "=f"(d3)
                 : "r"(a0), "r"(a1), "r"(a2), "r"(a3), "r"(b0), "r"(b1),
                   "f"(c0), "f"(c1), "f"(c2), "f"(c3));
  }
};

struct SM89_16x8x32_F32F8F8F32_E5M2_TN {
  using DRegisters = float[4];
  using ARegisters = uint32_t[4];
  using BRegisters = uint32_t[2];
  using CRegisters = float[4];

  CUTE_HOST_DEVICE static void fma(float &d0, float &d1, float &d2, float &d3,
                                   uint32_t const &a0, uint32_t const &a1,
                                   uint32_t const &a2, uint32_t const &a3,
                                   uint32_t const &b0, uint32_t const &b1,
                                   float const &c0, float const &c1,
                                   float const &c2, float const &c3) {
    asm volatile("mma.sync.aligned.m16n8k32.row.col.f32.e5m2.e5m2.f32 "
                 "{%0,  %1,  %2,  %3},"
                 "{%4,  %5,  %6,  %7},"
                 "{%8,  %9},"
                 "{%10, %11, %12, %13};\n"
                 : "=f"(d0), "=f"(d1), "=f"(d2), "=f"(d3)
                 : "r"(a0), "r"(a1), "r"(a2), "r"(a3), "r"(b0), "r"(b1),
                   "f"(c0), "f"(c1), "f"(c2), "f"(c3));
  }
};

// (T32,V1) -> (M8,N8)
using SM80_8x4 = Layout<Shape<Shape<_4, _8>, _1>, Stride<Stride<_8, _1>, _0>>;
// (T32,V2) -> (M8,N8)
using SM80_8x8_Row =
    Layout<Shape<Shape<_4, _8>, _2>, Stride<Stride<_16, _1>, _8>>;
// (T32,V4) -> (M8,N16)
using SM80_8x16_Row =
    Layout<Shape<Shape<_4, _8>, _4>, Stride<Stride<_32, _1>, _8>>;
// (T32,V4) -> (M16,N8)
using SM80_16x8_Row = Layout<Shape<Shape<_4, _8>, Shape<_2, _2>>,
                             Stride<Stride<_32, _1>, Stride<_16, _8>>>;

template <> struct MMA_Traits<SM89_16x8x32_F32F8F8F32_E4M3_TN> {
  using ValTypeD = float;
  using ValTypeA = fp8_e4_t;
  using ValTypeB = fp8_e4_t;
  using ValTypeC = float;

  using Shape_MNK = Shape<_16, _8, _32>;
  using ThrID = Layout<_32>;
  using ALayout = Layout<Shape<Shape<_4, _8>, Shape<_4, _2, _2>>,
                         Stride<Stride<_64, _1>, Stride<_16, _8, _256>>>;
  using BLayout = Layout<Shape<Shape<_4, _8>, Shape<_4, _2>>,
                         Stride<Stride<_32, _1>, Stride<_8, _128>>>;
  using CLayout = SM80_16x8_Row;
};

template <> struct MMA_Traits<SM89_16x8x32_F32F8F8F32_E5M2_TN> {
  using ValTypeD = float;
  using ValTypeA = fp8_e5_t;
  using ValTypeB = fp8_e5_t;
  using ValTypeC = float;

  using Shape_MNK = Shape<_16, _8, _32>;
  using ThrID = Layout<_32>;
  using ALayout = Layout<Shape<Shape<_4, _8>, Shape<_4, _2, _2>>,
                         Stride<Stride<_64, _1>, Stride<_16, _8, _256>>>;
  using BLayout = Layout<Shape<Shape<_4, _8>, Shape<_4, _2>>,
                         Stride<Stride<_32, _1>, Stride<_8, _128>>>;
  using CLayout = SM80_16x8_Row;
};

109
110
111
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<fp8_e4_t, fp8_e4_t, float, num_warp_m, num_warp_n,
                           N> {
112
  using MMA = MMA_Atom<SM89_16x8x32_F32F8F8F32_E4M3_TN>;
113
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
114
};
115
116
117
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<fp8_e5_t, fp8_e5_t, float, num_warp_m, num_warp_n,
                           N> {
118
  using MMA = MMA_Atom<SM89_16x8x32_F32F8F8F32_E5M2_TN>;
119
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
120
121
};

122
123
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<half_t, half_t, half_t, num_warp_m, num_warp_n, N> {
124
  using MMA = MMA_Atom<SM80_16x8x16_F16F16F16F16_TN>;
125
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
126
};
127
128
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n, N> {
129
  using MMA = MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>;
130
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
131
};
132
template <int num_warp_m, int num_warp_n, int N>
133
struct DispatchInstruction<bfloat16_t, bfloat16_t, float, num_warp_m,
134
                           num_warp_n, N> {
135
  using MMA = MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>;
136
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
137
};
138
template <int num_warp_m, int num_warp_n, int N>
139
struct DispatchInstruction<tfloat32_t, tfloat32_t, float, num_warp_m,
140
                           num_warp_n, N> {
141
  using MMA = MMA_Atom<SM80_16x8x8_F32TF32TF32F32_TN>;
142
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
143
};
144
145
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<int8_t, int8_t, int, num_warp_m, num_warp_n, N> {
146
  using MMA = MMA_Atom<SM80_16x8x32_S32S8S8S32_TN>;
147
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
148
};
149
150
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<double, double, double, num_warp_m, num_warp_n, N> {
151
152
153
154
  using MMA = MMA_Atom<SM80_8x8x4_F64F64F64F64_TN>;
  using MMA_Group = Tile<Int<num_warp_m * 16>, Int<num_warp_n * 16>, _X>;
};
#elif (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 750))
155
156
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n, N> {
157
  using MMA = MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>;
158
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _16>;
159
160
161
};
#endif

162
163
template <int Bits, int N, int K, bool K_inner, int num_warp_n,
          typename Enable = void>
164
165
166
167
168
169
170
171
172
173
174
struct OperandTraits {
  // Primary template, use padded layout and default copy
  static constexpr int stride = K_inner ? K : N;
  static constexpr int padded =
      stride % (256 / Bits) == 0 ? stride + 128 / Bits : stride;
  using Layout = typename std::conditional<
      K_inner, Layout<Shape<Int<N>, Int<K>>, Shape<Int<padded>, _1>>,
      Layout<Shape<Int<N>, Int<K>>, Shape<_1, Int<padded>>>>::type;
  using Copy = DefaultCopy;
};

175
176
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, true, num_warp_n,
177
178
179
180
                     typename std::enable_if<K % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
181
182
  using Copy = typename std::conditional<N == 8 * num_warp_n, SM75_U32x2_LDSM_N,
                                         SM75_U32x4_LDSM_N>::type;
183
184
};

185
186
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, true, num_warp_n,
187
188
189
190
                     typename std::enable_if<K % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
191
192
  using Copy = typename std::conditional<N == 8 * num_warp_n, SM75_U32x2_LDSM_N,
                                         SM75_U32x4_LDSM_N>::type;
193
194
};

195
196
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, false, num_warp_n,
197
198
199
200
201
                     typename std::enable_if<N % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
202
203
  using Copy = typename std::conditional<N == 8 * num_warp_n, SM75_U16x4_LDSM_T,
                                         SM75_U16x8_LDSM_T>::type;
204
205
};

206
207
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, false, num_warp_n,
208
209
210
211
212
                     typename std::enable_if<N % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_64, _8>, Stride<_1, _64>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
213
214
  using Copy = typename std::conditional<N == 8 * num_warp_n, SM75_U16x4_LDSM_T,
                                         SM75_U16x8_LDSM_T>::type;
215
216
};

217
218
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, true, num_warp_n,
219
220
221
222
                     typename std::enable_if<K % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
223
224
  using Copy = typename std::conditional<N == 8 * num_warp_n, SM75_U32x2_LDSM_N,
                                         SM75_U32x4_LDSM_N>::type;
225
226
};

227
228
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, true, num_warp_n,
229
230
231
232
                     typename std::enable_if<K % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_8, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
233
234
  using Copy = typename std::conditional<N == 8 * num_warp_n, SM75_U32x2_LDSM_N,
                                         SM75_U32x4_LDSM_N>::type;
235
236
};

237
238
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, false, num_warp_n,
239
240
241
242
243
244
245
246
                     typename std::enable_if<N % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

247
248
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, false, num_warp_n,
249
250
251
252
253
254
255
256
                     typename std::enable_if<N % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_16, _8>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

257
258
template <int N, int K, int num_warp_n>
struct OperandTraits<8, N, K, true, num_warp_n,
259
260
261
262
                     typename std::enable_if<K % 128 == 64>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 4, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
263
264
  using Copy = typename std::conditional<N == 8 * num_warp_n, SM75_U32x2_LDSM_N,
                                         SM75_U32x4_LDSM_N>::type;
265
266
};

267
268
template <int N, int K, int num_warp_n>
struct OperandTraits<8, N, K, true, num_warp_n,
269
270
271
272
                     typename std::enable_if<K % 128 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 4, 3>{}, Layout<Shape<_8, _128>, Stride<_128, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
273
274
  using Copy = typename std::conditional<N == 8 * num_warp_n, SM75_U32x2_LDSM_N,
                                         SM75_U32x4_LDSM_N>::type;
275
276
};

277
278
template <int N, int K, int num_warp_n>
struct OperandTraits<64, N, K, true, num_warp_n,
279
280
281
282
283
284
285
                     typename std::enable_if<K % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 0, 4>{}, Layout<Shape<_4, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = DefaultCopy;
};

286
287
template <int N, int K, int num_warp_n>
struct OperandTraits<64, N, K, false, num_warp_n,
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
                     typename std::enable_if<N % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 2>{}, Layout<Shape<_16, _4>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = DefaultCopy;
};

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type_raw,
          typename B_type_raw, typename C_type_raw>
class GemmTensorOp {
public:
  using A_type =
      typename std::conditional<std::is_same<A_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using B_type =
      typename std::conditional<std::is_same<B_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using C_type = C_type_raw;
  using Instruction =
309
      DispatchInstruction<A_type, B_type, C_type, num_warp_m, num_warp_n, N>;
310
311

  using OperandATraits =
312
      OperandTraits<sizeof_bits<A_type>::value, M, K, !trans_A, num_warp_m>;
313
  using OperandBTraits =
314
315
      OperandTraits<sizeof_bits<B_type>::value, N, K, trans_B, num_warp_n>;

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
  using SmemLayoutA = typename OperandATraits::Layout;
  using SmemLayoutB = typename OperandBTraits::Layout;
  using SmemCopyA = Copy_Atom<typename OperandATraits::Copy, A_type>;
  using SmemCopyB = Copy_Atom<typename OperandBTraits::Copy, B_type>;

  using TileMma = TiledMMA<typename Instruction::MMA,
                           Layout<Shape<Int<num_warp_m>, Int<num_warp_n>, _1>>,
                           typename Instruction::MMA_Group>;

  template <class... Args>
  static CUTE_DEVICE auto remove_swizzle(Layout<Args...> const &layout) {
    return layout;
  }
  // In fp16, when layout is KxN and n_warp is 1 and N % 64 == 0
  // the original layout fail to compile, currently using this as a workaround
  template <class... Args>
  static CUTE_DEVICE auto
  remove_swizzle(ComposedLayout<Args...> const &layout) {
    if constexpr (sizeof(A_type) == 2)
      return layout.layout_b();
    else
      return layout;
  }

  static CUTE_DEVICE void body(A_type_raw *pA, B_type_raw *pB, C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsA = thr_copy_A.partition_S(sA);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);
    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));

    if constexpr (clear_accum) {
      clear(acc);
    }
    // when layout is KxN and n_warp is 1, there seem to be a bug, use this as a
    // workaround
    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      copy(tiled_copy_A, tCsA(_, _, k), tCrA_copy_view(_, _, k));
      copy(tiled_copy_B, tCsB(_, _, k), tCrB_copy_view(_, _, k));
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_rs(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrA =
        make_tensor(make_rmem_ptr(reinterpret_cast<A_type *>(pA)),
                    partition_shape_A(tiled_mma, Shape<Int<M>, Int<K>>{}));

    if constexpr (clear_accum) {
      clear(acc);
    }
    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
    copy(tiled_copy_B, tCsB(_, _, 0), tCrB_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_B, tCsB(_, _, k + 1), tCrB_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_sr(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCsA = thr_copy_A.partition_S(sA);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrB =
        make_tensor(make_rmem_ptr(reinterpret_cast<B_type *>(pB)),
                    partition_shape_B(tiled_mma, Shape<Int<N>, Int<K>>{}));

    if constexpr (clear_accum) {
      clear(acc);
    }
    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
    copy(tiled_copy_A, tCsA(_, _, 0), tCrA_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_A, tCsA(_, _, k + 1), tCrA_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB(_, _, k), acc);
    }
  }
};

} // namespace cute

namespace tl {

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
CUTLASS_DEVICE void gemm_ss(A_type *pA, B_type *pB, C_type *accum) {
  using MMA = cute::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                 trans_B, clear_accum, A_type, B_type, C_type>;
  MMA::body(pA, pB, accum);
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
CUTLASS_DEVICE void gemm_rs(A_type *pA, B_type *pB, C_type *accum) {
  using MMA = cute::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                 trans_B, clear_accum, A_type, B_type, C_type>;
  MMA::body_rs(pA, pB, accum);
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
CUTLASS_DEVICE void gemm_sr(A_type *pA, B_type *pB, C_type *accum) {
  using MMA = cute::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                 trans_B, clear_accum, A_type, B_type, C_type>;
  MMA::body_sr(pA, pB, accum);
}

} // namespace tl