example_mha_fwd_varlen.py 17.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# ruff: noqa
import torch
import tilelang
import tilelang.language as T
import tilelang.testing
import argparse

import torch
from einops import rearrange, repeat
from flash_attn.bert_padding import pad_input, unpad_input


def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
    assert mode in ["full", "random", "third"]
    if mode == "full":
        lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
    elif mode == "random":
        lengths = torch.randint(
            max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device)
    elif mode == "third":
        lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
    padding_mask = (
        repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths)
    return padding_mask


def generate_qkv(q,
                 k,
                 v,
                 query_padding_mask=None,
                 key_padding_mask=None,
                 kvpacked=False,
                 qkvpacked=False):
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, d)
        k: (batch_size, seqlen_k, nheads_k, d)
        v: (batch_size, seqlen_k, nheads_k, d)
        query_padding_mask: (batch_size, seqlen), bool
        key_padding_mask: (batch_size, seqlen), bool
    """
    assert not (kvpacked and qkvpacked)
    batch_size, seqlen_q, nheads, d = q.shape
    _, seqlen_k, nheads_k, _ = k.shape
    assert k.shape == (batch_size, seqlen_k, nheads_k, d)
    assert v.shape == (batch_size, seqlen_k, nheads_k, d)

    if query_padding_mask is not None:
49
        q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, _ = unpad_input(q, query_padding_mask)
50
51
52
53
54
55
56
57
58
59
60
        output_pad_fn = lambda output_unpad: pad_input(output_unpad, indices_q, batch_size, seqlen_q
                                                      )
    else:
        q_unpad = rearrange(q, "b s h d -> (b s) h d")
        cu_seqlens_q = torch.arange(
            0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device)
        max_seqlen_q = seqlen_q
        output_pad_fn = lambda output_unpad: rearrange(
            output_unpad, "(b s) h d -> b s h d", b=batch_size)

    if key_padding_mask is not None:
61
62
        k_unpad, indices_k, cu_seqlens_k, max_seqlen_k, _ = unpad_input(k, key_padding_mask)
        v_unpad, _, _, _, _ = unpad_input(v, key_padding_mask)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    else:
        k_unpad = rearrange(k, "b s h d -> (b s) h d")
        v_unpad = rearrange(v, "b s h d -> (b s) h d")
        cu_seqlens_k = torch.arange(
            0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device)
        max_seqlen_k = seqlen_k

    if qkvpacked:
        assert (query_padding_mask == key_padding_mask).all()
        assert nheads == nheads_k
        qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
        qkv = torch.stack([q, k, v], dim=2)
        if query_padding_mask is not None:
            dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
        else:
            dqkv_pad_fn = lambda dqkv_unpad: rearrange(
                dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size)
        return (
            qkv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            max_seqlen_q,
            qkv.detach().requires_grad_(),
            output_pad_fn,
            dqkv_pad_fn,
        )
    elif kvpacked:
        kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
        kv = torch.stack([k, v], dim=2)
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
            dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
        else:
            dkv_pad_fn = lambda dkv_unpad: rearrange(
                dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size)
        return (
            q_unpad.detach().requires_grad_(),
            kv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            kv.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        )
    else:
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
            dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
        else:
            dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
        return (
            q_unpad.detach().requires_grad_(),
            k_unpad.detach().requires_grad_(),
            v_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            k.detach().requires_grad_(),
            v.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        )


def construct_local_mask(
    seqlen_q,
    seqlen_k,
    window_size=(-1, -1),  # -1 means infinite window size
    query_padding_mask=None,
    key_padding_mask=None,
    device=None,
    key_leftpad=None,
):
    row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
    col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
    if key_leftpad is not None:
        key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
        col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
        col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
    sk = (
        seqlen_k if key_padding_mask is None else rearrange(
            key_padding_mask.sum(-1), "b -> b 1 1 1"))
    sq = (
        seqlen_q if query_padding_mask is None else rearrange(
            query_padding_mask.sum(-1), "b -> b 1 1 1"))
    if window_size[0] < 0:
        return col_idx > row_idx + sk - sq + window_size[1]
    else:
        sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
        return torch.logical_or(
            col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
            col_idx < row_idx + sk - sq - window_size[0],
        )


def attention_ref(
        q,
        k,
        v,
        query_padding_mask=None,
        key_padding_mask=None,
        causal=False,
        window_size=(-1, -1),  # -1 means infinite window size
        upcast=True,
):
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k: (batch_size, seqlen_k, nheads_k, head_dim)
        v: (batch_size, seqlen_k, nheads_k, head_dim)
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
        causal: whether to apply causal masking
        window_size: (int, int), left and right window size
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
        reorder_ops: whether to change the order of operations (scaling k instead of scaling q, etc.)
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
    if causal:
        window_size = (window_size[0], 0)
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
200
    dim = q.shape[-1]
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    scale = (1.0 / dim)**0.5  # log2(e)
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
    scores = torch.einsum("bthd,bshd->bhts", q, k)
    if key_padding_mask is not None:
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
        # scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0)
    scores = scores * scale
    attention = torch.softmax(scores, dim=-1).to(v.dtype)

    # We want to mask here so that the attention matrix doesn't have any NaNs
    # Otherwise we'll get NaN in dV
    if query_padding_mask is not None:
        attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
    output = torch.einsum("bhts,bshd->bthd", attention, v)
    if query_padding_mask is not None:
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


221
def flashattn(batch_size, UQ, UKV, heads, dim, is_causal):
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    q_shape = [UQ, heads, dim]
    k_shape = [UKV, heads, dim]
    v_shape = [UKV, heads, dim]
    o_shape = [UQ, heads, dim]
    block_M = 64
    block_N = 64
    num_stages = 0
    threads = 32

    dtype = "float16"
    accum_dtype = "float"

    def kernel_func(block_M, block_N, num_stages, threads):

        @T.prim_func
        def main(
239
240
241
242
243
                Q_unpad: T.Tensor(q_shape, dtype),
                K_unpad: T.Tensor(k_shape, dtype),
                V_unpad: T.Tensor(v_shape, dtype),
                cu_seqlens_q: T.Tensor([batch_size + 1], "int32"),
                cu_seqlens_k: T.Tensor([batch_size + 1], "int32"),
244
                max_seqlen_q: T.int32,
245
                Output_unpad: T.Tensor(o_shape, dtype),
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        ):
            with T.Kernel(
                    T.ceildiv(max_seqlen_q, block_M), heads, batch_size,
                    threads=threads) as (bx, by, bz):
                Q_shared = T.alloc_shared([block_M, dim], dtype, "shared")
                K_shared = T.alloc_shared([block_N, dim], dtype, "shared")
                V_shared = T.alloc_shared([block_N, dim], dtype, "shared")
                O_shared = T.alloc_shared([block_M, dim], dtype, "shared")
                acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
                acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
                acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
                scores_max = T.alloc_fragment([block_M], accum_dtype)
                scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
                scores_scale = T.alloc_fragment([block_M], accum_dtype)
                scores_sum = T.alloc_fragment([block_M], accum_dtype)
                logsum = T.alloc_fragment([block_M], accum_dtype)

                batch_idx = bz
                head_idx = by

                q_start_idx = cu_seqlens_q[batch_idx]
                k_start_idx = cu_seqlens_k[batch_idx]
                v_start_idx = cu_seqlens_k[batch_idx]
                q_end_idx = cu_seqlens_q[batch_idx + 1]
                k_end_idx = cu_seqlens_k[batch_idx + 1]
                v_end_idx = cu_seqlens_k[batch_idx + 1]

                q_current_seqlen = q_end_idx - q_start_idx
                k_current_seqlen = k_end_idx - k_start_idx
                v_current_seqlen = v_end_idx - v_start_idx

                for i, d in T.Parallel(block_M, dim):
                    if bx * block_M + i < q_current_seqlen:
                        Q_shared[i, d] = Q_unpad[q_start_idx + bx * block_M + i, head_idx, d]
                    else:
                        Q_shared[i, d] = 0

                T.fill(acc_o, 0)
                T.fill(logsum, 0)
                T.fill(scores_max, -T.infinity(accum_dtype))

                loop_range = T.ceildiv(k_current_seqlen, block_N)

                for k in T.Pipelined(loop_range, num_stages=num_stages):
                    # Q * K
                    for i, d in T.Parallel(block_N, dim):
                        if k * block_N + i < k_current_seqlen:
                            K_shared[i, d] = K_unpad[k_start_idx + k * block_N + i, head_idx, d]
                        else:
                            K_shared[i, d] = 0
                    if is_causal:
                        for i, j in T.Parallel(block_M, block_N):
                            acc_s[i, j] = T.if_then_else((bx * block_M + i >= k * block_N + j) and
                                                         (bx * block_M + i >= q_current_seqlen or
                                                          k * block_N + j >= k_current_seqlen),
                                                         -T.infinity(acc_s.dtype), 0)
                    else:
                        for i, j in T.Parallel(block_M, block_N):
                            acc_s[i, j] = T.if_then_else((bx * block_M + i >= q_current_seqlen or
                                                          k * block_N + j >= k_current_seqlen),
                                                         -T.infinity(acc_s.dtype), 0)

                    T.gemm(
                        Q_shared,
                        K_shared,
                        acc_s,
                        transpose_B=True,
                        policy=T.GemmWarpPolicy.FullRow)

                    # Softmax
                    T.copy(scores_max, scores_max_prev)
                    T.fill(scores_max, -T.infinity(accum_dtype))
                    T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                    # To do causal softmax, we need to set the scores_max to 0 if it is -inf
                    # This process is called Check_inf in FlashAttention3 code, and it only need to be done
                    # in the first ceil_div(kBlockM, kBlockN) steps.
                    # for i in T.Parallel(block_M):
                    #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
                    for i in T.Parallel(block_M):
                        scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                    for i, j in T.Parallel(block_M, block_N):
                        # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
                        # max * log_2(e)) This allows the compiler to use the ffma
                        # instruction instead of fadd and fmul separately.
                        acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                    T.reduce_sum(acc_s, scores_sum, dim=1)
                    for i in T.Parallel(block_M):
                        logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                    T.copy(acc_s, acc_s_cast)

                    # Rescale
                    for i, j in T.Parallel(block_M, dim):
                        acc_o[i, j] *= scores_scale[i]

                    # V * softmax(Q * K)
                    for i, d in T.grid(block_N, dim):
                        if k * block_N + i < v_current_seqlen:
                            V_shared[i, d] = V_unpad[v_start_idx + k * block_N + i, head_idx, d]
                        else:
                            V_shared[i, d] = 0

                    T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] /= logsum[i]
                T.copy(acc_o, O_shared)

                for i, d in T.Parallel(block_M, dim):
                    if bx * block_M + i < q_current_seqlen:
                        Output_unpad[q_start_idx + bx * block_M + i, head_idx, d] = O_shared[i, d]

        return main

    return kernel_func(block_M, block_N, num_stages, threads)


362
def main(batch: int = 2, heads: int = 16, seq_len: int = 256, dim: int = 32):
363
364
365
366
367
368
369
370
371
372
373
374
375
    flops_per_matmul = 2.0 * batch * heads * seq_len * seq_len * dim
    total_flops = 2 * flops_per_matmul

    tilelang.testing.set_random_seed(0)

    causal = False
    if causal:
        total_flops *= 0.5

    dtype = torch.float16
    device = torch.device("cuda")
    window_size = (-1, -1)

376
377
    q = torch.randn(batch, seq_len, heads, dim, dtype=dtype, requires_grad=True).to(device)
    k = torch.randn(batch, seq_len, heads, dim, dtype=dtype, requires_grad=True).to(device)
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    v = torch.randn(batch, seq_len, heads, dim, dtype=dtype, requires_grad=True).to(device)

    query_padding_mask = generate_random_padding_mask(seq_len, batch, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seq_len, batch, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(
        q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)

    UQ = q_unpad.shape[0]  # unpadded query length
    UK = k_unpad.shape[0]  # unpadded key length
    UKV = k_unpad.shape[0]  # unpadded query key length

403
    program = flashattn(batch, UQ, UKV, heads, dim, causal)
404
    kernel = tilelang.compile(program, [6])
405
    print(kernel.get_kernel_source())
406

407
    out_unpad = kernel(q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q)
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    out = output_pad_fn(out_unpad)

    out_ref, _ = attention_ref(
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
        causal=causal,
    )
    import flash_attn
    fla_out_unpad = flash_attn.flash_attn_varlen_func(
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
    )
    fla_out = output_pad_fn(fla_out_unpad)
    torch.testing.assert_close(out, out_ref, rtol=1e-2, atol=1e-2)
432
    print("Assert Equal Passed")
433
434
435
436
437
438
439
440
441
442
443


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=2, help='batch size')
    parser.add_argument('--heads', type=int, default=16, help='heads')
    parser.add_argument('--seq_len', type=int, default=256, help='sequence length')
    parser.add_argument('--dim', type=int, default=32, help='dim')

    args = parser.parse_args()
    main(args.batch, args.heads, args.seq_len, args.dim)