example_mha_bwd_wgmma_pipelined.py 15.1 KB
Newer Older
1
2
3
4
5
6
7
8
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
import argparse


9
10
@tilelang.jit(out_idx=[3, 4])
def flashattn_fwd(batch, heads, seq_len, dim, is_causal, block_M, block_N):
11
12
13
14
15
16
17
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape = [batch, seq_len, heads, dim]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_fwd(
18
19
20
21
22
            Q: T.Tensor(shape, dtype),  # type: ignore
            K: T.Tensor(shape, dtype),  # type: ignore
            V: T.Tensor(shape, dtype),  # type: ignore
            Output: T.Tensor(shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    ):
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=128) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            # Q_local = T.alloc_fragment([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({Q_shared: tilelang.layout.make_swizzled_layout(Q_shared)})
            T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            # T.copy(Q_shared, Q_local)
            # for i, j in T.Parallel(block_M, dim):
            #     Q_local[i, j] *= scale
            loop_range = (
                T.ceildiv(
48
                    (bx + 1) * block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N))
49
50
            for k in T.Pipelined(loop_range, num_stages=1):
                T.copy(K[bz, k * block_N:(k + 1) * block_N, by, :], K_shared)
51
                if is_causal:
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
                                                     -T.infinity(acc_s.dtype))
                else:
                    T.clear(acc_s)
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(V[bz, k * block_N:(k + 1) * block_N, by, :], V_shared)
                T.copy(scores_max, scores_max_prev)
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                for i in T.Parallel(block_M):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] *= scores_scale[i]
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.copy(acc_s, acc_s_cast)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, lse[bz, by, bx * block_M:(bx + 1) * block_M])

    return flash_fwd


82
@tilelang.jit(out_idx=[2])
83
84
85
86
87
88
89
90
def flashattn_bwd_preprocess(batch, heads, seq_len, dim):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(
91
92
93
            O: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim, blk)):
                T.copy(O[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], o)
                T.copy(dO[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], do)
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
            T.copy(delta, Delta[bz, bx, by * blk:(by + 1) * blk])

    return flash_bwd_prep


def make_dq_layout(dQ):
    # atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
    return T.Layout(dQ.shape,
                    lambda b, l, h, d: [b, l // 8, h, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])


118
@tilelang.jit(out_idx=[1])
119
120
121
122
123
124
125
126
def flashattn_bwd_postprocess(batch, heads, seq_len, dim):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim]
    blk = 64

    @T.prim_func
    def flash_bwd_post(
127
128
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dQ_out: T.Tensor(shape, dtype),  # type: ignore
129
130
131
132
133
134
135
136
137
138
139
    ):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.annotate_layout({dQ: make_dq_layout(dQ)})
            T.copy(
                dQ[bz, bx * blk:(bx + 1) * blk, by, :],
                dQ_out[bz, bx * blk:(bx + 1) * blk, by, :],
            )

    return flash_bwd_post


140
@tilelang.jit
141
142
143
144
145
146
147
148
149
def flashattn_bwd(batch, heads, seq_len, dim, is_casual, block_M, block_N):
    sm_scale = (1.0 / dim)**0.5
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape = [batch, seq_len, heads, dim]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_bwd(
150
151
152
153
154
155
156
157
158
            Q: T.Tensor(shape, dtype),  # type: ignore
            K: T.Tensor(shape, dtype),  # type: ignore
            V: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dK: T.Tensor(shape, dtype),  # type: ignore
            dV: T.Tensor(shape, dtype),  # type: ignore
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=256) as (bx, by, bz):
            K_shared = T.alloc_shared([block_M, dim], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            # should not store K to local if dim is large
            # K_local = T.alloc_fragment([block_M, dim], dtype)
            # K_local_T = T.alloc_fragment([block_M, dim], dtype)
            # V_local = T.alloc_fragment([block_M, dim], dtype)
            q = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_M, dim], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim], dtype)
            dv = T.alloc_fragment([block_M, dim], accum_dtype)
            dk = T.alloc_fragment([block_M, dim], accum_dtype)
            dq = T.alloc_fragment([block_N, dim], accum_dtype)
            dv_shared = T.alloc_shared([block_N, dim], dtype)
            dk_shared = T.alloc_shared([block_N, dim], dtype)

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
            })

            T.copy(K[bz, by * block_M:(by + 1) * block_M, bx, :], K_shared)
            T.copy(V[bz, by * block_M:(by + 1) * block_M, bx, :], V_shared)
            T.clear(dv)
            T.clear(dk)
            loop_st = T.floordiv(by * block_M, block_N) if is_casual else 0
            loop_ed = T.ceildiv(seq_len, block_N)
            for k in T.Pipelined(loop_st, loop_ed, num_stages=2):
                T.copy(Q[bz, k * block_N:(k + 1) * block_N, bx, :], q)
                T.clear(qkT)
                T.gemm(
                    K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow, wg_wait=-1)
                T.copy(dO[bz, k * block_N:(k + 1) * block_N, bx, :], do)
                T.clear(dsT)
                T.gemm(
                    V_shared,
                    do,
                    dsT,
                    transpose_B=True,
                    policy=T.GemmWarpPolicy.FullRow,
                    wg_wait=-1)
209
                T.wait_wgmma(1)
210
211
212
213
214
215
216
217

                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
                if is_casual:
                    for i, j in T.Parallel(block_M, block_N):
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
218
                T.wait_wgmma(0)
219
220
221
222
223
224
225
226
227
228
229
230
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow, wg_wait=-1)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow, wg_wait=1)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True, wg_wait=1)
231
                T.wait_wgmma(0)
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
                for i, j in T.Parallel(block_N, dim):
                    if k * block_N + i < seq_len:
                        T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])
            T.copy(dv, dv_shared)
            T.copy(dk, dk_shared)
            T.copy(dv_shared, dV[bz, by * block_M:(by + 1) * block_M, bx, :])
            T.copy(dk_shared, dK[bz, by * block_M:(by + 1) * block_M, bx, :])

    return flash_bwd


class _attention(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, causal):
        BATCH, N_CTX, H, D_HEAD = q.shape
        block_M = 64
        block_N = 64 if D_HEAD <= 128 else 32
250
        mod = flashattn_fwd(BATCH, H, N_CTX, D_HEAD, causal, block_M, block_N)
251
252
253
254
255
256
257
258
        o, lse = mod(q, k, v)
        ctx.save_for_backward(q, k, v, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, o, lse = ctx.saved_tensors
259
        BATCH, N_CTX, H, D_HEAD = q.shape
260
261
262
263
264
265
266

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        do, q, k, v, o = [maybe_contiguous(x) for x in (do, q, k, v, o)]
267
268
269
270
        block_M = 64
        block_N = 64 if D_HEAD <= 64 else 32
        mod_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD)
        mod_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD)
271
        delta = mod_prep(o, do)
272
273
274
275
276
277
        mod = flashattn_bwd(BATCH, H, N_CTX, D_HEAD, ctx.causal, block_M, block_N)
        shape = [BATCH, N_CTX, H, D_HEAD]
        dq = torch.zeros(shape, dtype=torch.float32, device=q.device)
        dk = torch.empty(shape, dtype=torch.float16, device=q.device)
        dv = torch.empty(shape, dtype=torch.float16, device=q.device)
        mod(q, k, v, do, lse, delta, dq, dk, dv)
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        dq = mod_post(dq)
        return dq, dk, dv, None


attention = _attention.apply


def ref_program(Q, K, V, is_causal):
    dim = Q.size(-1)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


299
300
301
302
303
304
305
def main(
    BATCH: int = 8,
    H: int = 32,
    N_CTX: int = 1024,
    D_HEAD: int = 64,
    causal: bool = False,
):
306
307
    flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD
    total_flops = 5 * flops_per_matmul
308
    if causal:
309
310
311
312
313
314
315
        total_flops *= 0.5
    Q = (
        torch.empty(BATCH, N_CTX, H, D_HEAD, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
    K = torch.empty_like(Q).normal_().requires_grad_()
    V = torch.empty_like(Q).normal_().requires_grad_()
    dO = torch.randn_like(Q)
316
    O = attention(Q, K, V, causal)
317
318
319
320
321
    O.backward(dO, retain_graph=True)
    dQ, Q.grad = Q.grad.clone(), None
    dK, K.grad = K.grad.clone(), None
    dV, V.grad = V.grad.clone(), None

322
    O_ref = ref_program(Q, K, V, causal)
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    O_ref.backward(dO, retain_graph=True)
    dQ_ref, Q.grad = Q.grad.clone(), None
    dK_ref, K.grad = K.grad.clone(), None
    dV_ref, V.grad = V.grad.clone(), None

    assert torch.allclose(O, O_ref, rtol=1e-2, atol=1e-2)
    assert torch.allclose(dV, dV_ref, rtol=1e-2, atol=1e-2)
    assert torch.allclose(dK, dK_ref, rtol=1e-2, atol=1e-2)
    assert torch.allclose(dQ, dQ_ref, rtol=1e-2, atol=1e-2)

    def run():
        O_ref.backward(dO, retain_graph=True)

    def run1():
        O.backward(dO, retain_graph=True)

    from tilelang.profiler import do_bench

    latency = do_bench(run, warmup=500)
    print("torch: {:.2f} ms".format(latency))
    print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = do_bench(run1, warmup=500)
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
347
348
349
350
351
352
353
354
355
356
357


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='Batch size')
    parser.add_argument('--h', type=int, default=32, help='Number of heads')
    parser.add_argument('--n_ctx', type=int, default=1024, help='Context size')
    parser.add_argument('--d_head', type=int, default=64, help='Head dimension')
    parser.add_argument('--causal', type=bool, default=False, help='Causal flag')
    args = parser.parse_args()
    main(args.batch, args.h, args.n_ctx, args.d_head, args.causal)