example_tilelang_gemm_fp8_intrinsic.py 6.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch
from tilelang import tvm as tvm
import tilelang.testing
from tvm import DataType
import tilelang.language as T
from tilelang.intrinsics import get_swizzle_layout
from tilelang.intrinsics.mma_macro_generator import (
    TensorCoreIntrinEmitter,)
from tilelang.transform import simplify_prim_func
10
from tilelang.utils.tensor import map_torch_type
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

tilelang.testing.set_random_seed(0)


def make_swizzle_layout(shared_buf):
    dtype = shared_buf.dtype
    shape = shared_buf.shape

    can_swizzle = shape[-1] * DataType(dtype).bits == 512
    if not can_swizzle:
        return T.Layout(shape, lambda *args: args)

    def transform_func(i, j):
        new_warp_i, new_warp_j = get_swizzle_layout(i, j, shape[-1], dtype)
        return [new_warp_i, new_warp_j]

    return T.Layout(shape, transform_func)


30
@tilelang.jit(out_idx=[2])
31
32
33
34
35
36
37
38
39
40
41
@simplify_prim_func
def tl_matmul(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
):
    assert in_dtype in [
        "float16",
42
43
        "float8_e4m3",
        "float8_e5m2",
44
45
46
47
48
49
50
51
52
53
        "int8",
    ], "Currently only float16 and int8 are supported"
    assert out_dtype in [
        "float16",
        "float32",
        "int32",
    ], "Currently only float16, float32 and int32 are supported"

    micro_size_x = micro_size_y = micro_size_k = 16

54
    is_float8 = in_dtype in ["float8_e4m3", "float8_e5m2"]
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    if out_dtype == "int32" or is_float8:
        micro_size_k = 32

    # This is a debug config
    block_row_warps = 2
    block_col_warps = 2
    warp_row_tiles = 32
    warp_col_tiles = 32
    chunk = 32 if in_dtype == "float16" else 64
    shared_scope = "shared.dyn"

    # Pipeline Stage
    stage = 2

    block_M = block_row_warps * warp_row_tiles
    block_N = block_col_warps * warp_col_tiles
    block_K = chunk

    A_shape = (M, K)
    B_shape = (N, K)
    A_shared_shape = (block_M, block_K)
    B_shared_shape = (block_N, block_K)
    C_shared_shape = (
        block_M // micro_size_x,
        block_N // micro_size_y,
        micro_size_x,
        micro_size_y,
    )

    warp_size = 32
    threads = warp_size * (block_row_warps * block_col_warps)
    local_size_a = (micro_size_x * micro_size_k) // warp_size
    local_size_b = (micro_size_y * micro_size_k) // warp_size
    local_size_c = (micro_size_x * micro_size_y) // warp_size
    warp_rows = warp_row_tiles // micro_size_x
    warp_cols = warp_col_tiles // micro_size_y

    # MMA Wrapper to Auto Generate Code for MMA
    mma_emitter = TensorCoreIntrinEmitter(
        a_dtype=in_dtype,
        b_dtype=in_dtype,
        accum_dtype=accum_dtype,
        a_transposed=False,
        b_transposed=True,
        block_row_warps=block_row_warps,
        block_col_warps=block_col_warps,
        warp_row_tiles=warp_row_tiles,
        warp_col_tiles=warp_col_tiles,
        chunk=chunk,
    )

    @T.prim_func
107
    def gemm_fp8_intrinsic(
108
109
110
            A: T.Tensor(A_shape, in_dtype),
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):

            A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope)
            C_shared = T.alloc_shared(C_shared_shape, out_dtype, scope=shared_scope)
            A_local = T.alloc_local((warp_rows * local_size_a), in_dtype)
            B_local = T.alloc_local((warp_cols * local_size_b), in_dtype)
            C_local = T.alloc_local((warp_rows * warp_cols * local_size_c), accum_dtype)

            T.annotate_layout({
                A_shared: make_swizzle_layout(A_shared),
                B_shared: make_swizzle_layout(B_shared),
            })

            # Improve L2 Cache
            T.use_swizzle(panel_size=10)

            T.clear(C_local)

            for ko in T.Pipelined((K // block_K), num_stages=stage):

                # Load A into shared memory
                for i, k in T.Parallel(block_M, block_K):
                    A_shared[i, k] = A[by * block_M + i, ko * block_K + k]

                # Load B into shared memory
                for j, k in T.Parallel(block_N, block_K):
                    B_shared[j, k] = B[bx * block_N + j, ko * block_K + k]

                for ki in T.serial(0, (block_K // micro_size_k)):

                    # Load A into fragment
                    mma_emitter.ldmatrix_a(
                        A_local,
                        A_shared,
                        ki,
                    )

                    # Load B into fragment
                    mma_emitter.ldmatrix_b(
                        B_local,
                        B_shared,
                        ki,
                    )

                    # Perform Matrix Multiplication
                    mma_emitter.mma(A_local, B_local, C_local)

            # Perform STMatrix
            mma_emitter.stmatrix(
                C_local,
                C_shared,
            )

            # Store shared into global
            for i, j in T.Parallel(block_M, block_N):
                C[by * block_M + i, bx * block_N + j] = C_shared[
                    i // micro_size_x,
                    j // micro_size_y,
                    i % micro_size_x,
                    j % micro_size_y,
                ]

175
    return gemm_fp8_intrinsic
176
177
178


def assert_tl_matmul_correctness(M, N, K, in_dtype, out_dtype, accum_dtype):
179
    kernel = tl_matmul(M, N, K, in_dtype, out_dtype, accum_dtype)
180
    src_code = kernel.get_kernel_source()
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    print(src_code)
    # src_code is the generated cuda source
    assert src_code is not None

    in_dtype = map_torch_type(in_dtype)
    out_dtype = map_torch_type(out_dtype)
    accum_dtype = map_torch_type(accum_dtype)

    if in_dtype in {torch.int8, torch.int32}:
        A = torch.randint(-128, 128, (M, K), dtype=torch.int8).to(in_dtype).cuda()
        B = torch.randint(-128, 128, (N, K), dtype=torch.int8).to(in_dtype).cuda()
    elif in_dtype in {torch.float8_e4m3fn, torch.float8_e5m2}:
        A = torch.randn(M, K).to(in_dtype).cuda()
        B = torch.randn(N, K).to(in_dtype).cuda()
    else:
        A = torch.randn(M, K).to(in_dtype).cuda() - 0.5
        B = torch.randn(N, K).to(in_dtype).cuda() - 0.5

    C = torch.zeros(M, N, device="cuda", dtype=accum_dtype)

201
    profiler = kernel.get_profiler(tilelang.TensorSupplyType.Integer)
202

203
    C = profiler(A, B)
204

205
    latency = profiler.do_bench(warmup=25)
206
207
208
209
210
211
212
213
214
215
216

    # Ensure that the latency is not None
    assert latency is not None

    # Get Reference Result
    ref_c = torch.matmul(A.to(accum_dtype), B.T.to(accum_dtype)).to(out_dtype)
    print(C)
    print(ref_c)
    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


217
def main():
218
219
    assert_tl_matmul_correctness(128, 128, 128, "float8_e4m3", "float32", "float32")
    assert_tl_matmul_correctness(128, 128, 128, "float8_e5m2", "float32", "float32")
220
221
222


if __name__ == "__main__":
223
    main()