test_tilelang_language_reshape.py 7.28 KB
Newer Older
1
2
3
from tilelang import tvm as tvm
import tilelang.testing
import tilelang as tl
4
import torch
5
6
7
8
9
10
11


def reshape_test(N, M, dtype):
    import tilelang.language as T

    @T.prim_func
    def main(
12
13
            A: T.Tensor((N,), dtype),
            B: T.Tensor((N // M, M), dtype),
14
15
16
17
18
19
20
21
22
23
    ):
        with T.Kernel(1) as _:
            A_reshaped = T.reshape(A, [N // M, M])
            T.copy(A_reshaped, B)

    return main


def run_reshape(N, M, dtype):
    program = reshape_test(N, M, dtype)
24
25
26
27
28
29
30
31
32
    # TODO(lei): reshape cannot apply shared memory
    # layout transform propagation
    jit_kernel = tl.compile(
        program,
        out_idx=-1,
        pass_configs={
            tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
            tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
        })
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    profiler = jit_kernel.get_profiler()

    def ref_program(A):
        return A.reshape(N // M, M)

    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)


def test_reshape_smem():
    # Test reshape
    run_reshape(1024, 32, "float32")
    run_reshape(2048, 64, "float16")


47
def reshape_test_smem_1d_2_2d(N, M, dtype):
48
49
50
51
    import tilelang.language as T

    @T.prim_func
    def main(
52
53
            A: T.Tensor((N,), dtype),
            B: T.Tensor((N // M, M), dtype),
54
55
56
    ):
        with T.Kernel(1) as _:
            A_shared = T.alloc_shared((N,), dtype)
57
            for i in T.Parallel(N):
58
59
60
                A_shared[i] = A[i]

            A_smem_reshaped = T.reshape(A_shared, [N // M, M])
61
            T.copy(A_smem_reshaped, B)
62
63
64
65

    return main


66
67
def run_reshape_smem_1d_2_2d(N, M, dtype):
    program = reshape_test_smem_1d_2_2d(N, M, dtype)
68
69
70
71
72
73
74
75
76
    # TODO(lei): reshape cannot apply shared memory
    # layout transform propagation
    jit_kernel = tl.compile(
        program,
        out_idx=-1,
        pass_configs={
            tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
            tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
        })
77
78
79
80
81
82
83
84
    profiler = jit_kernel.get_profiler()

    def ref_program(A):
        return A.reshape(N // M, M)

    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)


85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
def test_reshape_smem_1d_2_2d():
    run_reshape_smem_1d_2_2d(1024, 32, "float32")
    run_reshape_smem_1d_2_2d(2048, 64, "float16")


def reshape_test_smem_2d_2_1d(N, M, dtype):
    import tilelang.language as T

    @T.prim_func
    def main(
            A: T.Tensor((N // M, M), dtype),
            B: T.Tensor((N,), dtype),
    ):
        with T.Kernel(1) as _:
            A_shared = T.alloc_shared((N // M, M), dtype)
            for i, j in T.Parallel(N // M, M):
                A_shared[i, j] = A[i, j]

            A_smem_reshaped = T.reshape(A_shared, [N])
            T.copy(A_smem_reshaped, B)

    return main

Gabriel Wu's avatar
Gabriel Wu committed
108

109
110
def run_reshape_smem_2d_2_1d(N, M, dtype):
    program = reshape_test_smem_2d_2_1d(N, M, dtype)
111
112
113
114
115
116
117
118
119
    # TODO(lei): reshape cannot apply shared memory
    # layout transform propagation
    jit_kernel = tl.compile(
        program,
        out_idx=-1,
        pass_configs={
            tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
            tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
        })
120
121
122
123
124
125
126
    profiler = jit_kernel.get_profiler()

    def ref_program(A):
        return A.reshape(N)

    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)

Gabriel Wu's avatar
Gabriel Wu committed
127

128
129
130
131
def test_reshape_smem_2d_2_1d():
    run_reshape_smem_2d_2_1d(1024, 32, "float32")
    run_reshape_smem_2d_2_1d(2048, 64, "float16")

132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def reshape_fragment_test(N, M, dtype):
    import tilelang.language as T

    @T.prim_func
    def main(
            A: T.Tensor((N // M, M), dtype),
            B: T.Tensor((N,), dtype),
    ):
        with T.Kernel(1, threads=32) as _:
            A_shared = T.alloc_shared((N // M, M), dtype, scope="shared")
            A_local = T.alloc_fragment((N // M, M), dtype)
            B_shared = T.alloc_shared((N,), dtype, scope="shared")

            T.copy(A, A_shared)
            T.copy(A_shared, A_local)
            A_local_reshape = T.reshape(A_local, [N])
            T.copy(A_local_reshape, B_shared)
            T.copy(B_shared, B)

    return main


def run_reshape_fragment(N, M, dtype):
    program = reshape_fragment_test(N, M, dtype)
    jit_kernel = tl.compile(
        program,
        out_idx=-1,
        pass_configs={
            tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
            tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
        })
    profiler = jit_kernel.get_profiler()

    def ref_program(A):
        return A.reshape(N)

    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)


def test_reshape_fragment():
    run_reshape_fragment(1024, 32, "float32")
    run_reshape_fragment(2048, 64, "float16")


def reshape_layout_transform_shared(N, M, dtype):
    import tilelang.language as T
    from tilelang.intrinsics.mma_layout import make_mma_swizzle_layout

    @T.prim_func
    def main(
            A: T.Tensor((N // M, M), dtype),
            B: T.Tensor((N,), dtype),
    ):
        with T.Kernel(1, threads=32) as _:
            A_shared = T.alloc_shared((N // M, M), dtype, scope="shared")

            T.annotate_layout({
                A_shared: make_mma_swizzle_layout(A_shared),
            })
            T.copy(A, A_shared)
            A_shared_reshape = T.reshape(A_shared, [N])
            T.copy(A_shared_reshape, B)

    return main


def run_reshape_layout_transform_shared(N, M, dtype):
    program = reshape_layout_transform_shared(N, M, dtype)
    jit_kernel = tl.compile(
        program,
        out_idx=-1,
        pass_configs={
            tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
            tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
        })
    profiler = jit_kernel.get_profiler()

    def ref_program(A):
        return A.reshape(N)

    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)


def test_reshape_layout_transform_shared():
    run_reshape_layout_transform_shared(1024, 32, "float32")
    run_reshape_layout_transform_shared(2048, 64, "float16")


def reduce_after_reshape_test(N, M, dtype):
    import tilelang.language as T

    @T.prim_func
    def main(
            A: T.Tensor((N,), dtype),
            B: T.Tensor((N // M,), dtype),
    ):
        with T.Kernel(1, threads=32) as _:
            A_shared = T.alloc_shared((N,), dtype, scope="shared")
            A_local = T.alloc_fragment((N,), dtype)
            B_local = T.alloc_fragment((N // M,), dtype)

            T.copy(A, A_shared)
            T.copy(A_shared, A_local)
            A_local_reshape = T.reshape(A_local, [N // M, M])
            T.reduce_max(A_local_reshape, B_local, dim=1)
            T.copy(B_local, B)

    return main


def run_reduce_after_reshape(N, M, dtype):
    program = reduce_after_reshape_test(N, M, dtype)
    jit_kernel = tl.compile(
        program,
        out_idx=-1,
        pass_configs={
            tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
            tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
        })
    profiler = jit_kernel.get_profiler()

    def ref_program(A):
        return torch.max(A.reshape(N // M, M), dim=1).values

    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)


def test_reduce_after_reshape():
    run_reduce_after_reshape(1024, 32, "float32")
    run_reduce_after_reshape(2048, 64, "float16")


265
266
if __name__ == "__main__":
    tilelang.testing.main()