example_linear_attn_fwd.py 4.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
import tilelang as tl
import tilelang.language as T
from tilelang.profiler import do_bench

import argparse
from fla.ops.linear_attn import fused_chunk_linear_attn  # We compare with FLA


def chunk_linear_attn_fwd_kernel(
    B,
    S,
    H,
    DK,
    DV,
    dtype: str = 'float16',
    scale: float = None,
) -> torch.Tensor:

    if scale is None:
        scale = DK**-0.5
    accum_dtype = 'float'

    chunk_size = 64
    BK = BV = 64
    assert S % chunk_size == 0 and DK % BK == 0 and DV % BV == 0
    NK = tl.cdiv(DK, BK)
    NV = tl.cdiv(DV, BV)
    NT = tl.cdiv(S, chunk_size)

    @T.prim_func
    def main(Q: T.Tensor([B, S, H, DK], dtype), K: T.Tensor([B, S, H, DK], dtype),
             V: T.Tensor([B, S, H, DV], dtype), O: T.Tensor([NK, B, S, H, DV], dtype),
             final_state: T.Tensor([B, H, DK, DV], accum_dtype)):
        with T.Kernel(NV, NK, B * H) as (i_v, i_k, i_bh):
            i_b = i_bh // H
            i_h = i_bh % H

            q = T.alloc_shared([chunk_size, BK], dtype)
            k = T.alloc_shared([chunk_size, BK], dtype)
            v = T.alloc_shared([chunk_size, BV], dtype)
            h = T.alloc_fragment([BK, BV], accum_dtype)
            h_shared = T.alloc_shared([BK, BV], dtype)
            s = T.alloc_fragment([chunk_size, chunk_size], accum_dtype)
            s_shared = T.alloc_shared([chunk_size, chunk_size], dtype)
            o = T.alloc_fragment([chunk_size, BV], accum_dtype)
            T.clear(h)

            T.annotate_layout({
                q: tl.layout.make_swizzled_layout(q),
                k: tl.layout.make_swizzled_layout(k),
                v: tl.layout.make_swizzled_layout(v),
                h_shared: tl.layout.make_swizzled_layout(h_shared),
                s_shared: tl.layout.make_swizzled_layout(s_shared),
            })
            T.use_swizzle(8)

            for i in T.Pipelined(0, NT, num_stages=1):
                for row, col in T.Parallel(chunk_size, BK):
                    q[row, col] = Q[i_b, i * chunk_size + row, i_h, i_k * BK + col] * scale
                T.copy(K[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_k * BK:(i_k + 1) * BK], k)
                T.copy(V[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_v * BV:(i_v + 1) * BV], v)

                T.gemm(q, k, s, clear_accum=True, transpose_B=True)
                for row, col in T.Parallel(chunk_size, chunk_size):
                    s_shared[row, col] = T.if_then_else(row >= col, s[row, col], 0)

                T.gemm(s_shared, v, o, clear_accum=True)
                T.copy(h, h_shared)
                T.gemm(q, h_shared, o)
                T.gemm(k, v, h, transpose_A=True)
                T.copy(
                    o, O[i_k, i_b, i * chunk_size:(i + 1) * chunk_size, i_h,
                         i_v * BV:(i_v + 1) * BV])

            # Output final state
            T.copy(h, final_state[i_b, i_h, i_k * BK:(i_k + 1) * BK, i_v * BV:(i_v + 1) * BV])

    return main


def postprocess(o, h):
    o = o[0] if o.size(0) == 1 else o.sum(0)
    return o, h


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--B', type=int, default=8, help='Batch size')
    parser.add_argument('--S', type=int, default=2048, help='Seq len')
    parser.add_argument('--H', type=int, default=64, help='Num heads')
    parser.add_argument('--D', type=int, default=256, help='Head dim')
    args = parser.parse_args()
    B, S, H, D = args.B, args.S, args.H, args.D

    q = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)
    k = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)
    v = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)

    fn = chunk_linear_attn_fwd_kernel(B, S, H, D, D)
    kernel = tl.compile(fn, out_idx=[3, 4], target='cuda')
    o, h = postprocess(*kernel(q, k, v))
    o_ref, h_ref = fused_chunk_linear_attn(q, k, v, output_final_state=True, normalize=False)

    if torch.allclose(o, o_ref) and torch.allclose(h, h_ref):
        print('Passed all tests!✅')
    else:
        print('Failed some tests!❌')

    t1 = do_bench(
        lambda: fused_chunk_linear_attn(q, k, v, output_final_state=True, normalize=False)[0],
        warmup=25,
        rep=100)
    t2 = do_bench(lambda: kernel(q, k, v)[0].sum(0), warmup=25, rep=100)
    print(f'Triton latency: {t1:.3f} ms')
    print(f'TileLang latency: {t2:.3f} ms')
    print(f'Speedup: {t1/t2:.3f}x')


if __name__ == '__main__':
    main()