example_grouped_gemm_bwd.py 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import torch
import math
import argparse
import tilelang
import tilelang.language as T

tilelang.disable_cache()


def grouped_gemm_fwd(batch_sum,
                     batch_count,
                     K,
                     N,
                     block_M,
                     block_N,
                     block_K,
                     num_stages=2,
                     threads=128,
                     dtype="float16"):
    """
    args:
        a (torch.Tensor): Input tensor of shape (M, K).
        b (torch.Tensor): Input tensor of shape (G, K, N).
    """
    accum_dtype = "float32"

    @T.prim_func
    def kernel(
            A: T.Tensor([batch_sum, K], dtype),  # type: ignore
            B: T.Tensor([batch_count, K, N], dtype),  # type: ignore
            C: T.Tensor([batch_sum, N], dtype),  # type: ignore
            batch_sizes: T.Tensor([batch_count], "int32"),  # type: ignore
            batch_offsets: T.Tensor([batch_count], "int32"),  # type: ignore
            batch_padded_offsets: T.Tensor([batch_count], "int32"),  # type: ignore
    ):

        with T.Kernel(
                T.ceildiv(batch_sum, block_M) + batch_count, T.ceildiv(N, block_N),
                threads=threads) as (bx, by):
            A_shared = T.alloc_shared([block_M, block_K], dtype)
            B_shared = T.alloc_shared([block_K, block_N], dtype)
            C_local = T.alloc_fragment([block_M, block_N], accum_dtype)
            cur_batch_idx = T.alloc_local([1], "int32")
            cur_batch_size = T.alloc_local([1], "int32")

            m_start_padded = bx * block_M

            for i in range(batch_count):
                in_cur_batch_idx = (m_start_padded >= batch_padded_offsets[i])
                cur_batch_idx[0] = T.if_then_else(in_cur_batch_idx, i, cur_batch_idx[0])

            cur_batch_size[0] = batch_sizes[cur_batch_idx[0]]
            m_start = m_start_padded - batch_padded_offsets[cur_batch_idx[0]] + batch_offsets[
                cur_batch_idx[0]]
            actual_rows = T.max(
                0,
                T.min(block_M,
                      cur_batch_size[0] + batch_padded_offsets[cur_batch_idx[0]] - m_start_padded))

            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(A[m_start:m_start + block_M, k * block_K:(k + 1) * block_K], A_shared)
                T.copy(
                    B[cur_batch_idx[0], k * block_K:(k + 1) * block_K,
                      by * block_N:(by + 1) * block_N], B_shared)
                T.gemm(A_shared, B_shared, C_local)

            for i, j in T.Parallel(block_M, block_N):
                with T.If(i < actual_rows), T.Then():
                    C[m_start + i, by * block_N + j] = C_local[i, j]

    return kernel


class _GroupedGEMM(torch.autograd.Function):

    @staticmethod
    def forward(ctx, a, b, batch_sizes):
        block_M = 64
        block_N = 64
        block_K = 64
        padding_M = block_M
        num_stages = 2
        threads = 128
        batch_sum = a.shape[0]
        batch_count = b.shape[0]
        K = a.shape[1]
        N = b.shape[2]

        assert a.shape[1] == b.shape[1]
        assert batch_sizes.shape[0] == batch_count
        assert batch_sizes.sum() == batch_sum

        batch_offsets_list = [0]
        batch_padded_offsets_list = [0]
        for i in range(batch_count - 1):
            batch_offsets_list.append(batch_offsets_list[-1] + batch_sizes[i])
        for i in range(batch_count - 1):
            batch_padded_offsets_list.append(batch_padded_offsets_list[-1] +
                                             math.ceil((batch_sizes[i] + 1) / padding_M) *
                                             padding_M)
        batch_offsets = torch.tensor(batch_offsets_list, device=a.device, dtype=torch.int32)
        batch_padded_offsets = torch.tensor(
            batch_padded_offsets_list, device=a.device, dtype=torch.int32)

        program = grouped_gemm_fwd(batch_sum, batch_count, K, N, block_M, block_N, block_K,
                                   num_stages, threads)

        kernel = tilelang.compile(
            program,
            out_idx=[2],
            pass_configs={
                "tl.disable_tma_lower": True,
                "tl.disable_warp_specialized": True
            })
        o = kernel(a, b, batch_sizes, batch_offsets, batch_padded_offsets)
        ctx.save_for_backward(a, b, batch_sizes, batch_offsets)
        ctx.batch_sum = batch_sum
        ctx.batch_count = batch_count
        ctx.K = K
        return o

    @staticmethod
    def backward(ctx, grad_output):
        block_M = 64
        block_N = 64
        block_K = 64
        num_stages = 2
        threads = 128

        M = ctx.K
        N = grad_output.shape[1]

        A, B, batch_sizes, batch_offsets = ctx.saved_tensors

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        A, B, batch_sizes = [maybe_contiguous(x) for x in (A, B, batch_sizes)]
        program = grouped_gemm_bwd(ctx.batch_sum, ctx.batch_count, M, N, block_M, block_N, block_K,
                                   num_stages, threads)
        kernel = tilelang.compile(
            program,
            out_idx=[2],
            pass_configs={
                "tl.disable_tma_lower": True,
                "tl.disable_warp_specialized": True
            })

        dB = kernel(A, grad_output, batch_sizes, batch_offsets)
        return None, dB, None


def ref_program(a, b, batch_sizes):
    assert a.shape[0] == sum(batch_sizes)
    assert b.shape[0] == len(batch_sizes)

    output = torch.empty((sum(batch_sizes), b.shape[2]), device=a.device, dtype=a.dtype)

    start = 0
    a_list = []
    b_list = []
    for i, size in enumerate(batch_sizes):
        end = start + size
        part_a = a[start:end]
        part_b = b[i]
        output[start:end] = torch.mm(part_a, part_b)

        a_list.append(part_a)
        b_list.append(part_b)
        start = end

    return output


def construct_inputs(batch_sizes_list, K, M, trans_b, padding_M, device, dtype):
    batch_sum = sum(batch_sizes_list)
    batch_count = len(batch_sizes_list)
    batch_offsets_list = [0]
    batch_padded_offsets_list = [0]
    for i in range(batch_count - 1):
        batch_offsets_list.append(batch_offsets_list[-1] + batch_sizes_list[i])
    for i in range(batch_count - 1):
        batch_padded_offsets_list.append(batch_padded_offsets_list[-1] +
                                         math.ceil((batch_sizes_list[i] + 1) / padding_M) *
                                         padding_M)
    A = torch.randn(batch_sum, K, device=device, dtype=dtype)
    B = torch.randn(batch_count, K, M, device=device, dtype=dtype)
    C = torch.empty(batch_sum, M, device=device, dtype=dtype)
    batch_sizes = torch.tensor(batch_sizes_list, device=device, dtype=torch.int32)
    batch_offsets = torch.tensor(batch_offsets_list, device=device, dtype=torch.int32)
    batch_padded_offsets = torch.tensor(batch_padded_offsets_list, device=device, dtype=torch.int32)
    # print(batch_sizes_tensor)
    # print(batch_offsets_tensor)
    # print(batch_padded_offsets_tensor)
    return A, B, C, batch_sizes, batch_offsets, batch_padded_offsets


def grouped_gemm_bwd(batch_sum,
                     batch_count,
                     M,
                     N,
                     block_M,
                     block_N,
                     block_K,
                     num_stages=2,
                     threads=128,
                     dtype="float16"):
    """
    args:
        a (torch.Tensor): Input tensor of shape (M, K).
        b (torch.Tensor): Input tensor of shape (G, K, N).
    """
    accum_dtype = "float32"

    @T.prim_func
    def kernel(
            A: T.Tensor([batch_sum, M], dtype),  # type: ignore
            B: T.Tensor([batch_sum, N], dtype),  # type: ignore
            C: T.Tensor([batch_count, M, N], dtype),  # type: ignore
            batch_sizes: T.Tensor([batch_count], "int32"),  # type: ignore
            batch_offsets: T.Tensor([batch_count], "int32"),  # type: ignore
    ):

        with T.Kernel(
                T.ceildiv(M, block_M), T.ceildiv(N, block_N), batch_count,
                threads=threads) as (bx, by, bz):
            A_shared = T.alloc_shared([block_K, block_M], dtype)
            B_shared = T.alloc_shared([block_K, block_N], dtype)
            C_local = T.alloc_fragment([block_M, block_N], accum_dtype)

            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(batch_sizes[bz], block_K), num_stages=num_stages):
                for i, j in T.Parallel(block_K, block_M):
                    A_shared[i, j] = T.if_then_else(
                        i < batch_sizes[bz], A[batch_offsets[bz] + k * block_K + i,
                                               bx * block_M + j], 0)
                for i, j in T.Parallel(block_K, block_N):
                    B_shared[i, j] = T.if_then_else(
                        i < batch_sizes[bz], B[batch_offsets[bz] + k * block_K + i,
                                               by * block_N + j], 0)
                T.gemm(A_shared, B_shared, C_local, transpose_A=True)

            T.copy(C_local, C[bz, bx * block_M, by * block_N])

    return kernel


def run_tilelang_grouped_gemm(batch_sizes_list,
                              K,
                              M,
                              block_M,
                              block_N,
                              block_K,
                              trans_b,
                              num_stages=2,
                              threads=128,
                              profile=False):

    padding_M = block_M
    device = torch.device("cuda")
    dtype = torch.float16

    A, B, C, batch_sizes, batch_offsets, batch_padded_offsets = construct_inputs(
        batch_sizes_list, K, M, False, padding_M, device, dtype)

    A.requires_grad_(False)
    B.requires_grad_(True)
    O_ref = ref_program(A, B, batch_sizes)
    dO = torch.randn_like(O_ref)

    O_ref.backward(dO, retain_graph=True)
    dB_ref, B.grad = B.grad.clone(), None

    GroupedGEMM = _GroupedGEMM.apply
    O = GroupedGEMM(A, B, batch_sizes)
    O.backward(dO, retain_graph=True)
    dB, B.grad = B.grad.clone(), None

    if (
        torch.allclose(O, O_ref, rtol=1e-2, atol=1e-2) and \
        torch.allclose(dB, dB_ref, rtol=1e-2, atol=1e-2)
    ):
        print("✅ Tilelang and Torch match")
    else:
        print("❌ Tilelang and Torch mismatch")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--batch_sizes', type=str, default="64, 128", help='comma-separated batch sizes')
    parser.add_argument('--K', type=int, default=8192, help='reduce dim')
    parser.add_argument('--M', type=int, default=8192, help='output dim')
    parser.add_argument('--trans_b', action="store_true", help="transpose B")
    parser.add_argument('--profile', action="store_true", help="profile")
    args = parser.parse_args()

    batch_sizes_list = [int(x) for x in args.batch_sizes.split(",")]
    K, M, trans_b = args.K, args.M, args.trans_b

    block_M = 64
    block_N = 128
    block_K = 64
    num_stages = 2
    threads = 256

    run_tilelang_grouped_gemm(
        batch_sizes_list,
        K,
        M,
        block_M,
        block_N,
        block_K,
        trans_b,
        num_stages,
        threads,
        profile=args.profile)