storage_access.cc 15.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file storage_access.cc
 */
#include "storage_access.h"

25
#include <tvm/arith/analyzer.h>
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <tvm/target/target_info.h>
#include <tvm/tir/op.h>

#include <string>
#include <utility>

#include "tir/transforms/ir_utils.h"

namespace tvm {
namespace tl {

using namespace tir;

void TileLangStorageAccessVisitor::VisitExpr_(const BufferLoadNode *op) {
  Var buf = op->buffer->data;
41
  buffer_data_to_buffer_.Set(GetRef<Var>(buf.get()), op->buffer);
42
43
  StorageScope scope = GetScope(buf);
  if (Enabled(buf.get(), scope)) {
44
    ICHECK(allow_append_) << GetRef<BufferLoad>(op) << " " << scope.to_string();
45
46
    AccessEntry e;
    e.threads = env_threads();
47
    e.thread_range = this->ComputeThreadRange(e.threads);
48
    e.buffer = buf;
49
    e.buffer_indices = op->indices;
50
51
52
53
54
55
56
57
58
    e.dtype = op->dtype.element_of();
    for (const auto &index : op->indices) {
      e.touched.push_back(arith::IntSet::Vector(index));
    }
    e.type = kRead;
    e.scope = scope;
    curr_stmt_.access.emplace_back(std::move(e));
  }
  // traverse child
59
  IRVisitorWithAnalyzer::VisitExpr_(op);
60
61
62
63
64
65
66
67
}

void TileLangStorageAccessVisitor::VisitStmt_(const BufferStoreNode *op) {
  allow_append_ = true;
  ICHECK_EQ(curr_stmt_.access.size(), 0U);
  curr_stmt_.stmt = op;

  Var buf = op->buffer->data;
68
  buffer_data_to_buffer_.Set(GetRef<Var>(buf.get()), op->buffer);
69
70
71
72
  StorageScope scope = GetScope(buf);
  if (Enabled(buf.get(), scope)) {
    AccessEntry e;
    e.threads = env_threads();
73
    e.thread_range = this->ComputeThreadRange(e.threads);
74
    e.buffer = buf;
75
    e.buffer_indices = op->indices;
76
77
78
79
80
81
82
83
84
    e.dtype = op->value.dtype().element_of();
    for (const auto &index : op->indices) {
      e.touched.push_back(arith::IntSet::Vector(index));
    }
    e.type = kWrite;
    e.scope = scope;
    curr_stmt_.access.emplace_back(std::move(e));
  }
  // traverse child
85
  IRVisitorWithAnalyzer::VisitStmt_(op);
86
87
88
89
90
91
92
93
94
95
96
  // push to the scope
  scope_.back().push_back(curr_stmt_);
  // clear access entry.
  curr_stmt_.access.clear();
  allow_append_ = false;
}

void TileLangStorageAccessVisitor::VisitStmt_(const EvaluateNode *op) {
  allow_append_ = true;
  ICHECK_EQ(curr_stmt_.access.size(), 0U);
  curr_stmt_.stmt = op;
97
  IRVisitorWithAnalyzer::VisitStmt_(op);
98
  // push to the scope
99
  if (!curr_stmt_.access.empty()) {
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    scope_.back().push_back(curr_stmt_);
    curr_stmt_.access.clear();
  }
  allow_append_ = false;
}

void TileLangStorageAccessVisitor::VisitStmt_(const LetStmtNode *op) {
  allow_append_ = true;
  ICHECK_EQ(curr_stmt_.access.size(), 0U);
  curr_stmt_.stmt = op;
  this->VisitExpr(op->value);
  // push to the scope
  scope_.back().push_back(curr_stmt_);
  // clear access entry.
  curr_stmt_.access.clear();
  allow_append_ = false;
  // traverse body block
  this->VisitStmt(op->body);
}

120
121
122
123
124
125
126
127
128
void TileLangStorageAccessVisitor::VisitStmt_(const BlockNode *op) {
  auto block = Downcast<Block>(op);
  for (const auto &buffer : block->alloc_buffers) {
    ICHECK(buffer->IsInstance<BufferNode>());
    buffer_data_to_buffer_.Set(buffer->data, buffer);
  }
  IRVisitorWithAnalyzer::VisitStmt_(op);
}

129
130
131
132
133
void TileLangStorageAccessVisitor::VisitStmt_(const AttrStmtNode *op) {
  if (op->attr_key == tvm::tir::attr::double_buffer_write) {
    ICHECK(double_buffer_write_ == nullptr);
    double_buffer_write_ = op->node.as<VarNode>();
    scope_.push_back(std::vector<StmtEntry>());
134
    IRVisitorWithAnalyzer::VisitStmt_(op);
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    StmtEntry s;
    s.stmt = op;
    s.access = Summarize(std::move(scope_.back()), nullptr);
    scope_.pop_back();
    if (!s.access.empty()) {
      for (AccessEntry &e : s.access) {
        if (e.type == kWrite && e.buffer.get() == double_buffer_write_) {
          e.double_buffer_write = true;
        }
      }
      scope_.back().emplace_back(std::move(s));
    }
    double_buffer_write_ = nullptr;
  } else if (op->attr_key == tvm::tir::attr::coproc_scope) {
    IterVar iv = Downcast<IterVar>(op->node);
    env_threads_.push_back(iv);
151
    IRVisitorWithAnalyzer::VisitStmt_(op);
152
153
154
155
    env_threads_.pop_back();
  } else if (op->attr_key == tvm::tir::attr::thread_extent) {
    IterVar iv = Downcast<IterVar>(op->node);
    env_threads_.push_back(iv);
156
157
158
159
    ICHECK_NE(iv->thread_tag.length(), 0U);
    analyzer_.Bind(
        iv->var, Range::FromMinExtent(IntImm(op->value->dtype, 0), op->value));

160
161
162
    if (!in_device_env_) {
      in_device_env_ = true;
      scope_.push_back(std::vector<StmtEntry>());
163
      IRVisitorWithAnalyzer::VisitStmt_(op);
164
165
166
167
168
      // no need to take the result as the thread barrier automatically syncs.
      Summarize(std::move(scope_.back()), nullptr);
      in_device_env_ = false;
      scope_.pop_back();
    } else {
169
      IRVisitorWithAnalyzer::VisitStmt_(op);
170
171
172
173
174
175
176
    }
    env_threads_.pop_back();
  } else if (op->attr_key == tvm::tir::attr::hand_threaded) {
    // skip this pass on blocks that were hand_threaded
    // this avoids control flow and read/write conflicts
    // between hand-threaded kernels and automatic threading
  } else {
177
    IRVisitorWithAnalyzer::VisitStmt_(op);
178
179
180
181
182
  }
}

void TileLangStorageAccessVisitor::VisitStmt_(const ForNode *op) {
  scope_.push_back(std::vector<StmtEntry>());
183
  IRVisitorWithAnalyzer::VisitStmt_(op);
184
185
186
187
  StmtEntry s;
  s.stmt = op;
  s.access = Summarize(std::move(scope_.back()), op);
  scope_.pop_back();
188
  if (!s.access.empty()) {
189
190
191
192
193
194
    // relax the touched set to contain all ranges in the loop.
    std::unordered_map<const VarNode *, arith::IntSet> relax_map;
    relax_map[op->loop_var.get()] =
        arith::IntSet::FromRange(Range::FromMinExtent(op->min, op->extent));
    for (AccessEntry &e : s.access) {
      if (e.buffer.defined()) {
195
        ICHECK(!e.touched.empty());
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        Array<arith::IntSet> new_touched;
        for (const auto &touched : e.touched) {
          new_touched.push_back(arith::EvalSet(touched, relax_map));
        }
        e.touched = std::move(new_touched);
      }
    }
  }
  if (!s.access.empty()) {
    scope_.back().emplace_back(std::move(s));
  }
}

bool IsThreadInvariant(const PrimExpr &cond) {
  if (auto call = cond.as<CallNode>()) {
    if (auto opt_call_op = call->op.as<Op>()) {
      auto call_op = opt_call_op.value();
      if (call_op.same_as(builtin::tvm_thread_invariant())) {
        return true;
      }
    }
  }
  return false;
}

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/**
 * @brief Visit an IfThenElse statement and collect storage access summaries for
 * its branches.
 *
 * Visits the if-then-else node's condition and both branches to summarize
 * buffer reads, writes, and synchronization events under the condition's
 * constraints. If the condition is not thread-invariant, increments an internal
 * condition counter for the duration of processing.
 *
 * Behavior and side effects:
 * - Evaluates the condition expression (using ExtractRealCondition) and applies
 * it as a constraint while summarizing the then-branch.
 * - For the else-branch (when present), applies the negated,
 * analyzer-simplified condition
 *   (analyzer_.rewrite_simplify(Not(real_condition))) as the constraint.
 * - Accumulates summarized StmtEntry access information for the then/else
 * branches and appends a combined StmtEntry for the IfThenElseNode into the
 * current scope.
 * - Temporarily toggles allow_append_ and clears curr_stmt_.access during
 * condition evaluation and branch summarization.
 * - Modifies internal state: scope_ (push/pop of temporary branch scopes),
 * curr_stmt_.access, and condition_counter_ (incremented/decremented when the
 * condition is not thread-invariant).
 */
245
246
247
248
249
void TileLangStorageAccessVisitor::VisitStmt_(const IfThenElseNode *op) {
  bool is_thread_invariant = IsThreadInvariant(op->condition);
  if (!is_thread_invariant) {
    ++condition_counter_;
  }
250
251

  allow_append_ = true;
252
  this->VisitExpr(op->condition);
253
254
  PrimExpr real_condition = ExtractRealCondition(op->condition);

255
256
257
  curr_stmt_.access.clear();
  allow_append_ = false;

258
  scope_.push_back(std::vector<StmtEntry>());
259
260
261
262
263
  {
    With<arith::ConstraintContext> constraint(&analyzer_, real_condition);
    this->VisitStmt(op->then_case);
  }

264
265
266
267
268
269
  StmtEntry s;
  s.stmt = op;
  s.access = Summarize(std::move(scope_.back()), nullptr);
  scope_.pop_back();
  if (op->else_case) {
    scope_.push_back(std::vector<StmtEntry>());
270
    {
271
272
      With<arith::ConstraintContext> constraint(
          &analyzer_, analyzer_.rewrite_simplify(Not(real_condition)));
273
274
      this->VisitStmt(op->else_case.value());
    }
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    auto v = Summarize(std::move(scope_.back()), nullptr);
    scope_.pop_back();
    s.access.insert(s.access.end(), v.begin(), v.end());
  }
  scope_.back().emplace_back(std::move(s));
  if (!is_thread_invariant) {
    --condition_counter_;
  }
}

void TileLangStorageAccessVisitor::VisitStmt_(const WhileNode *op) {
  bool is_thread_invariant = IsThreadInvariant(op->condition);
  if (!is_thread_invariant) {
    ++condition_counter_;
  }
  this->VisitExpr(op->condition);
  scope_.push_back(std::vector<StmtEntry>());
  this->VisitStmt(op->body);
  StmtEntry s;
  s.stmt = op;
  s.access = Summarize(std::move(scope_.back()), nullptr);
  scope_.pop_back();
  scope_.back().emplace_back(std::move(s));
  if (!is_thread_invariant) {
    --condition_counter_;
  }
}

void TileLangStorageAccessVisitor::VisitExpr_(const CallNode *op) {
  if (op->op.same_as(builtin::address_of())) {
    ICHECK_EQ(op->args.size(), 1U);
306
307
308
309
    if (auto load = op->args[0].as<BufferLoadNode>()) {
      Buffer buffer = load->buffer;
      DataType dtype = buffer->dtype;
      const VarNode *buffer_var = buffer->data.as<VarNode>();
310
      buffer_data_to_buffer_.Set(GetRef<Var>(buffer_var), buffer);
311
      StorageScope scope = GetScope(GetRef<Var>(buffer_var));
312
313
314
      Array<Range> buffer_ranges;
      // from indices to buffer indices
      ICHECK(buffer->shape.size() == load->indices.size());
315
316
      // Use buffer shape and indices to compute the buffer_ranges for each
      // dimension.
317
      for (size_t i = 0; i < buffer->shape.size(); ++i) {
318
319
320
        PrimExpr min = load->indices[i];
        PrimExpr extent = make_const(buffer->shape[i].dtype(), 1);
        buffer_ranges.push_back(Range::FromMinExtent(min, extent));
321
      }
322
323
324
325
      if (Enabled(buffer_var, scope)) {
        ICHECK(allow_append_);
        AccessEntry e;
        e.threads = env_threads();
326
        e.thread_range = this->ComputeThreadRange(e.threads);
327
328
        e.dtype = dtype;
        e.buffer = Downcast<Var>(buffer->data);
329
        e.buffer_ranges = buffer_ranges;
330
331
332
        for (const auto &index : load->indices) {
          e.touched.push_back(arith::IntSet::Vector(index));
        }
333
        e.is_pointer_access = true;
334
335
336
        e.type = kRead;
        e.scope = scope;
        curr_stmt_.access.emplace_back(e);
337
      }
338
      IRVisitorWithAnalyzer::VisitExpr_(load);
339
    } else {
340
      IRVisitorWithAnalyzer::VisitExpr_(op);
341
342
343
344
    }
  } else if (op->op.same_as(builtin::tvm_access_ptr())) {
    ICHECK_EQ(op->args.size(), 5U);
    DataType dtype = op->args[0].dtype();
345
    const VarNode *buffer_var = op->args[1].as<VarNode>();
346
347
348
    PrimExpr offset = op->args[2];
    PrimExpr extent = op->args[3];
    const IntImmNode *flag = op->args[4].as<IntImmNode>();
349
    StorageScope scope = GetScope(GetRef<Var>(buffer_var));
350
    // The buffer scope.
351
    if (Enabled(buffer_var, scope)) {
352
      ICHECK(allow_append_);
353
354
355
356
357
358
359
360
361
362
363
364
      Array<Range> buffer_ranges;
      if (buffer_data_to_buffer_.find(GetRef<Var>(buffer_var)) ==
          buffer_data_to_buffer_.end()) {
        // cannot find buffer map, use the default buffer
        buffer_ranges = {Range::FromMinExtent(offset, extent)};
      } else {
        Buffer buffer = buffer_data_to_buffer_.at(GetRef<Var>(buffer_var));
        auto buffer_shape = buffer->shape;
        // convert 1d offset to multi-dimensional index
        auto linear_to_indices = [this](PrimExpr offset,
                                        const Array<PrimExpr> &shape) {
          Array<PrimExpr> indices;
365
          PrimExpr remaining = std::move(offset);
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
          for (size_t i = 0; i < shape.size(); ++i) {
            PrimExpr stride = make_const(DataType::Int(32), 1);
            for (size_t j = i + 1; j < shape.size(); ++j) {
              stride = stride * shape[j];
            }
            PrimExpr idx = FloorDiv(remaining, stride);
            remaining = FloorMod(remaining, stride);
            indices.push_back(analyzer_.Simplify(idx));
          }
          return indices;
        };
        Array<PrimExpr> start_indices = linear_to_indices(offset, buffer_shape);
        Array<PrimExpr> end_indices =
            linear_to_indices(offset + extent, buffer_shape);
        for (size_t i = 0; i < buffer_shape.size(); ++i) {
          buffer_ranges.push_back(Range::FromMinExtent(
              start_indices[i],
              analyzer_.Simplify(end_indices[i] - start_indices[i])));
        }
      }
386
387
      AccessEntry e;
      e.threads = env_threads();
388
      e.thread_range = this->ComputeThreadRange(e.threads);
389
      e.dtype = dtype;
390
391
392
      e.buffer = GetRef<Var>(buffer_var);
      e.buffer_ranges = buffer_ranges;
      e.is_pointer_access = true;
393
394
395
396
397
398
399
400
401
402
403
404
      e.touched = {
          arith::IntSet::FromRange(Range::FromMinExtent(offset, extent))};
      e.scope = scope;
      if (flag->value & 1) {
        e.type = kRead;
        curr_stmt_.access.emplace_back(e);
      }
      if (flag->value & 2) {
        e.type = kWrite;
        curr_stmt_.access.emplace_back(e);
      }
    }
405
    IRVisitorWithAnalyzer::VisitExpr_(op);
406
407
408
409
410
411
412
  } else if (op->op.same_as(builtin::tvm_storage_sync())) {
    ICHECK(allow_append_);
    const std::string &s = op->args[0].as<StringImmNode>()->value;
    if (s != "warp") {
      StorageScope scope = StorageScope::Create(s);
      AccessEntry e;
      e.threads = env_threads();
413
      e.thread_range = this->ComputeThreadRange(e.threads);
414
415
416
417
418
      e.type = kSync;
      e.scope = StorageScope::Create(s);
      curr_stmt_.access.emplace_back(std::move(e));
    }
  } else {
419
420
421
422
    IRVisitorWithAnalyzer::VisitExpr_(op);
  }
}

423
424
Map<Var, Range> TileLangStorageAccessVisitor::ComputeThreadRange(
    const Array<IterVar> &threads) {
425
426
427
428
429
430
431
432
433
434
435
436
437
  Map<Var, Range> thread_range;
  for (const auto &th : threads) {
    auto thread_tag = th->thread_tag;
    if (thread_tag == "threadIdx.x" || thread_tag == "threadIdx.y" ||
        thread_tag == "threadIdx.z") {
      auto const_int_bound = analyzer_.const_int_bound(th->var);
      auto min_value = const_int_bound->min_value;
      auto max_value = const_int_bound->max_value;
      auto extent = max_value - min_value + 1;
      auto dtype = th->var.dtype();
      thread_range.Set(th->var, Range::FromMinExtent(IntImm(dtype, min_value),
                                                     IntImm(dtype, extent)));
    }
438
  }
439
  return thread_range;
440
441
}

442
443
StorageScope
TileLangStorageAccessVisitor::GetScope(const Var &buffer_var) const {
444
445
446
447
448
449
450
451
  if (buffer_var->type_annotation.as<PointerTypeNode>()) {
    return StorageScope::Create(GetPtrStorageScope(buffer_var));
  }
  return StorageScope(); // global by default
}

} // namespace tl
} // namespace tvm