sparse_mla_fwd.py 10.3 KB
Newer Older
1
2
3
4
# ruff: noqa
import torch
import tilelang
from tilelang import language as T
5
from utils import assert_tensors_similar
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234


@tilelang.jit(
    out_idx=[-2, -1],
    pass_configs={
        tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
        tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
    },
)
def sparse_mla_fwd(
    heads,
    dim,
    tail_dim,
    topk,
    kv_group=1,
    sm_scale=None,
    is_causal=True,
    CP0=True,
    block_I=64,
    num_stages=2,
    threads=256,
):
    assert dim == tilelang.math.next_power_of_2(
        dim), f"haven't check padding correctness yet, dim={dim}"
    assert tail_dim == tilelang.math.next_power_of_2(
        tail_dim), f"haven't check padding correctness yet, dim={tail_dim}"
    assert is_causal == True, "non-casual is not supported"
    assert (topk %
            block_I == 0), "otherwise will load some index=0 thus causing wrong kv to be loaded"
    if sm_scale is None:
        sm_scale = (1.0 / (dim + tail_dim))**0.5 * 1.44269504  # log2(e)
    else:
        sm_scale = sm_scale * 1.44269504  # log2(e)

    batch = T.symbolic("batch")
    seq_len = T.symbolic("seq_len")
    seq_len_kv = T.symbolic("seq_len_kv")

    head_kv = heads // kv_group
    q_shape = [batch, seq_len, heads, dim + tail_dim]
    kv_shape = [batch, seq_len_kv, kv_group, dim + tail_dim]
    o_shape = [batch, seq_len, heads, dim]
    indices_shape = [batch, seq_len, kv_group, topk]
    lse_shape = [batch, seq_len, heads]
    indices_dtype = "int32"
    dtype = "bfloat16"
    accum_dtype = "float"

    G = kv_group
    H = head_kv
    padded_H = max(tilelang.math.next_power_of_2(head_kv), 16)
    if padded_H != H:
        assert (
            kv_group == 1
        ), "here we solve the H padding automatically, other wise you should handle Q copy and Output copy with your mask (when kv_group == 1, use g_i * padded_H:(g_i+1) * padded_H would be handled automatically)"
    BI = block_I
    NI = tilelang.cdiv(topk, block_I)
    D = dim
    D_tail = tail_dim

    if head_kv > 64:
        assert head_kv % 64 == 0, "head_kv should be a multiple of 64"
        REPLICATE_H = head_kv // 64
    else:
        REPLICATE_H = 1

    H_per_block = padded_H if REPLICATE_H == 1 else 64

    @T.prim_func
    def main(
            Q: T.Tensor(q_shape, dtype),  # type: ignore
            KV: T.Tensor(kv_shape, dtype),  # type: ignore
            Indices: T.Tensor(indices_shape, indices_dtype),  # type: ignore
            Output: T.Tensor(o_shape, dtype),  # type: ignore
            Lse: T.Tensor(lse_shape, accum_dtype),  # type: ignore
    ):
        with T.Kernel(
                seq_len * REPLICATE_H, batch, kv_group, threads=threads) as (
                    bx,
                    by,
                    bz,
                ):
            Q_shared = T.alloc_shared([H_per_block, D], dtype)
            Q_tail_shared = T.alloc_shared([H_per_block, D_tail], dtype)
            KV_shared = T.alloc_shared([BI, D], dtype)
            K_tail_shared = T.alloc_shared([BI, D_tail], dtype)
            O_shared = T.alloc_shared([H_per_block, D], dtype)
            Lse_shared = T.alloc_shared([H_per_block], accum_dtype)
            mask = T.alloc_fragment([BI], "bool")

            acc_o = T.alloc_fragment([H_per_block, D], accum_dtype)
            acc_s = T.alloc_fragment([H_per_block, BI], accum_dtype)
            S_shared = T.alloc_shared([H_per_block, BI], dtype)
            sumexp = T.alloc_fragment([H_per_block], accum_dtype)
            sumexp_i = T.alloc_fragment([H_per_block], accum_dtype)
            alpha = T.alloc_fragment([H_per_block], accum_dtype)
            m_i = T.alloc_fragment([H_per_block], accum_dtype)
            m_i_prev = T.alloc_fragment([H_per_block], accum_dtype)

            T.fill(acc_o, 0)
            T.fill(sumexp, 0)
            T.fill(m_i, -(2**30))  # avoid -inf - inf to cause nan

            b_i, g_i = by, bz
            s_i = bx if REPLICATE_H == 1 else (bx // REPLICATE_H)
            q_i = s_i
            max_kv_i = q_i

            H0 = g_i * padded_H + (0 if REPLICATE_H == 1 else (bx % REPLICATE_H) * 64)
            H1 = H0 + H_per_block

            T.copy(Q[b_i, s_i, H0:H1, :D], Q_shared)
            T.copy(Q[b_i, s_i, H0:H1, D:], Q_tail_shared)

            for i_i in T.Pipelined(NI, num_stages=num_stages):

                for bi_i in T.Parallel(BI):
                    mask[bi_i] = Indices[b_i, s_i, g_i, i_i * BI + bi_i] <= max_kv_i

                for bi_i, d_i in T.Parallel(BI, D):
                    KV_shared[bi_i, d_i] = KV[b_i, Indices[b_i, s_i, g_i, i_i * BI + bi_i], g_i,
                                              d_i]
                for bi_i, d_i in T.Parallel(BI, D_tail):
                    K_tail_shared[bi_i, d_i] = KV[b_i, Indices[b_i, s_i, g_i, i_i * BI + bi_i], g_i,
                                                  D + d_i]

                for h_i, bi_i in T.Parallel(H_per_block, BI):
                    acc_s[h_i, bi_i] = T.if_then_else(mask[bi_i], 0, -T.infinity(acc_s.dtype))
                T.gemm(
                    Q_shared,
                    KV_shared,
                    acc_s,
                    transpose_B=True,
                    policy=T.GemmWarpPolicy.FullCol,
                )
                T.gemm(
                    Q_tail_shared,
                    K_tail_shared,
                    acc_s,
                    transpose_B=True,
                    policy=T.GemmWarpPolicy.FullCol,
                )
                T.copy(m_i, m_i_prev)
                T.reduce_max(acc_s, m_i, dim=1, clear=False)
                for h_i in T.Parallel(H_per_block):
                    alpha[h_i] = T.exp2((m_i_prev[h_i] - m_i[h_i]) * sm_scale)
                for h_i, bi_i in T.Parallel(H_per_block, BI):
                    acc_s[h_i, bi_i] = T.exp2(acc_s[h_i, bi_i] * sm_scale - m_i[h_i] * sm_scale)
                T.reduce_sum(acc_s, sumexp_i, dim=1)  # is this a accumulate operator?
                for h_i in T.Parallel(H_per_block):
                    sumexp[h_i] = sumexp[h_i] * alpha[h_i] + sumexp_i[h_i]
                for h_i, d_i in T.Parallel(H_per_block, D):
                    acc_o[h_i, d_i] = acc_o[h_i, d_i] * alpha[h_i]

                T.copy(acc_s, S_shared)
                T.gemm(S_shared, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)

            # Rescale
            for h_i, d_i in T.Parallel(H_per_block, D):
                acc_o[h_i, d_i] /= sumexp[h_i]
            for h_i in T.Parallel(H_per_block):
                sumexp[h_i] = T.log2(sumexp[h_i]) + m_i[h_i] * sm_scale

            T.copy(acc_o, O_shared)
            T.copy(acc_o, Output[b_i, s_i, H0:H1, :])
            T.copy(sumexp, Lse_shared)
            T.copy(sumexp, Lse[b_i, s_i, H0:H1])

    return main


def sparse_mla_fwd_interface(q, kv, indices, sm_scale=None, return_p_sum: bool = False, d_v=512):
    is_casual = True
    assert return_p_sum == False, "This kernel file is for fwd only"
    assert q.is_contiguous() and kv.is_contiguous() and indices.is_contiguous()
    batch, seq_len, heads, dim_plus_tail_dim = q.shape
    _, seq_len_kv, kv_group, _ = kv.shape

    assert dim_plus_tail_dim == 576, "you should assign dim otherwise"
    dim = d_v

    assert kv.shape[-1] == dim_plus_tail_dim
    tail_dim = dim_plus_tail_dim - dim
    assert kv.shape[0] == batch
    _, _, _, topk = indices.shape
    assert indices.shape == (batch, seq_len, kv_group, topk)

    kernel = sparse_mla_fwd(heads, dim, tail_dim, topk, kv_group, sm_scale, is_casual)
    out, lse = kernel(q, kv, indices)
    return out, lse


def ref_sparse_mla_fwd_interface(q, kv, indices, sm_scale=None, is_casual=True):
    q = q.float()
    kv = kv.float()
    indices = indices.transpose(1, 2)
    b, sq, h, dim_q = q.shape
    b, sk, g, _ = kv.shape

    assert kv.shape[-1] == 576, "you should assign dim otherwise"
    dim = 512
    k = kv
    v = kv[..., :dim]

    b, _, _, dim_v = v.shape
    g_index = g
    h_index = h // g
    compressed_casual_mask = torch.arange(
        0, sq, dtype=torch.int32, device="cuda").view(-1, 1) >= torch.arange(
            1 - 1, sk * 1, 1, dtype=torch.int32, device="cuda").view(1, -1)

    mask = q.new_zeros(b, g_index, sq, sk + 1, dtype=torch.bool).scatter(3, indices.long(), 1)
    mask = mask[..., :-1]
    mask = mask & compressed_casual_mask.view(1, 1, sq, sk)
    mask[:, :, :1 - 1, 0] = True
    mask = mask.view(b, g_index, 1, sq, sk)

    q = q.view(b, sq, g, -1, dim_q)
    score = torch.einsum("bmghd,bngd->bghmn", q, k)
    sm_scale = dim_q**-0.5 if sm_scale is None else sm_scale
    score = score.masked_fill(~mask, float("-inf")).mul(sm_scale)
    p = score.softmax(dim=-1)
    p = p.view(b, g_index, h_index, -1, sq, sk)
    p = p.view(b, g, -1, sq, sk)
    o = torch.einsum("bghmn,bngd->bmghd", p.type(v.dtype), v)
    o = o.reshape(b, sq, h, dim_v)
    return o.to(torch.bfloat16)


235
236
237
238
239
240
241
242
243
def test_sparse_mla_fwd(B=1,
                        S=4096,
                        SKV=4096,
                        H=128,
                        HKV=1,
                        DQK=576,
                        DV=512,
                        topk=2048,
                        dtype=torch.bfloat16):
244
245
246
247
248
249
250
251
252
253
254
255
256
    torch.random.manual_seed(0)
    q = torch.randn((B, S, H, DQK), dtype=dtype, device="cuda").requires_grad_(True)
    kv = torch.randn((B, SKV, HKV, DQK), dtype=dtype, device="cuda").requires_grad_(True)

    indices = torch.full((B, S, HKV, topk), SKV, dtype=torch.int32, device="cuda")
    for b in range(B):
        for t in range(S):
            for h in range(HKV):
                i_i = torch.randperm(max(1, t))[:topk]
                indices[b, t, h, :len(i_i)] = i_i

    tl_out, tl_lse = sparse_mla_fwd_interface(q, kv, indices)

257
258
259
260
261
262
    if SKV <= 4096:
        # otherwise may cause out of memory
        ref_out = ref_sparse_mla_fwd_interface(q, kv, indices)
        assert_tensors_similar(tl_out, ref_out, eps=1e-2, name="out")
        print("assert_tensors_similar passed")

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    def fn():
        return sparse_mla_fwd_interface(q, kv, indices)

    from tilelang.profiler import do_bench

    ms = do_bench(
        fn,
        rep=100,
        warmup=250,
    )
    print(f"Average time: {ms:.3f} ms")
    print("fwd io bandwidth = ", (B * S * DQK * topk * 2) / (ms * 1e-3) / 1e12)
    print("fwd tflops = ", (B * S * (DQK + DV) * topk * 2 * H) / (ms * 1e-3) / 1e12)


if __name__ == "__main__":
279
    test_sparse_mla_fwd(
280
        B=1, S=4096, SKV=4096, H=128, HKV=1, DQK=576, DV=512, topk=2048, dtype=torch.bfloat16)