test_tilelang_kernel_gemv_simt.py 5.93 KB
Newer Older
1
2
3
4
5
6
7
8
import torch
import torch.backends
import tilelang.testing
from tilelang import tvm as tvm
from tvm import DataType
import tilelang.language as T
from tilelang import JITKernel
from tilelang.transform.simplify import apply_simplify
9
from tilelang.utils.tensor import map_torch_type
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from typing import Optional

tilelang.testing.set_random_seed(0)


def gemv_simt(
    M: int,
    N: int,
    K: int,
    in_dtype: str,
    out_dtype: str,
    accum_dtype: str,
    trans_A: bool,
    trans_B: bool,
    with_bias: bool = False,
    n_partition: Optional[int] = 4,
    reduce_thread: Optional[int] = 32,
):
    assert n_partition is not None, "n_partition must be provided"
    assert reduce_thread is not None, (
30
31
        "reduce_thread must be provided currently, as related bitblas.gpu.gemv.GEMVsch_outer_reduction_with_config is not implemented"
    )
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

    assert isinstance(N, int) and isinstance(K, int), "Do not support dynamic N and K Currently"

    assert trans_A is False, "Dequantize only implement for trans_A=False currently"
    assert trans_B is True, "Dequantize only implement for trans_B=TRue currently"

    MAX_TRANSACTION_SIZE_IN_BITS = 128
    micro_size_k = MAX_TRANSACTION_SIZE_IN_BITS // DataType(in_dtype).bits

    block_K = reduce_thread * micro_size_k

    A_shape = (M, K)
    B_shape = (N, K)
    Bias_shape = (N,)
    C_shape = (M, N)

    dp4a_size = 4
    use_dp4a = in_dtype == "int8" and accum_dtype == "int32"

    @T.prim_func
    def main(
53
54
55
56
        A: T.Tensor(A_shape, in_dtype),
        B: T.Tensor(B_shape, in_dtype),
        Bias: T.Tensor(Bias_shape, out_dtype),
        C: T.Tensor(C_shape, out_dtype),
57
    ):
58
59
60
61
        with T.Kernel(T.ceildiv(N, n_partition), M, threads=(reduce_thread, n_partition)) as (
            bx,
            by,
        ):
62
63
64
65
66
            A_local = T.alloc_local((micro_size_k,), in_dtype)
            B_local = T.alloc_local((micro_size_k,), in_dtype)
            accum_res = T.alloc_local((1,), accum_dtype)
            reduced_accum_res = T.alloc_local((1,), accum_dtype)

67
68
            kr = T.get_thread_binding(0)
            ni = T.get_thread_binding(1)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

            T.clear(accum_res)
            for ko in T.serial(T.ceildiv(K, block_K)):
                for v in T.vectorized(micro_size_k):
                    A_local[v] = A[by, ko * block_K + kr * micro_size_k + v]

                for v in T.vectorized(micro_size_k):
                    B_local[v] = B[
                        bx * n_partition + ni,
                        ko * block_K + kr * micro_size_k + v,
                    ]

                if use_dp4a:
                    for ki in T.serial(micro_size_k // dp4a_size):
                        T.dp4a(
                            A_local[ki * dp4a_size],
                            B_local[ki * dp4a_size],
                            accum_res[0],
                        )
                else:
                    for ki in T.serial(micro_size_k):
90
                        accum_res[0] += A_local[ki].astype(accum_dtype) * B_local[ki].astype(accum_dtype)
91
92

            with T.attr(
93
94
95
                T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
                "reduce_scope",
                T.reinterpret(T.uint64(0), dtype="handle"),
96
97
98
99
100
101
102
103
104
            ):
                T.evaluate(
                    T.tvm_thread_allreduce(
                        T.uint32(1),
                        accum_res[0],
                        True,
                        reduced_accum_res[0],
                        kr,
                        dtype="handle",
105
106
                    )
                )
107
108
            if kr == 0:
                if with_bias:
109
                    C[by, bx * n_partition + ni] = reduced_accum_res[0] + Bias[bx * n_partition + ni]
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
                else:
                    C[by, bx * n_partition + ni] = reduced_accum_res[0]

    return apply_simplify(main)


def evaluate_gemv_simt(
    M: int,
    N: int,
    K: int,
    in_dtype: str,
    out_dtype: str,
    accum_dtype: str,
    trans_A: bool = False,
    trans_B: bool = True,
    with_bias: bool = False,
):
    program = gemv_simt(M, N, K, in_dtype, out_dtype, accum_dtype, trans_A, trans_B, with_bias)

    kernel = JITKernel(program, target="cuda")

    in_dtype = map_torch_type(in_dtype)
    out_dtype = map_torch_type(out_dtype)
    accum_dtype = map_torch_type(accum_dtype)

    if in_dtype in {torch.int8, torch.int32}:
        A = torch.randint(-128, 128, (M, K), dtype=torch.int8).to(in_dtype).cuda()
        B = torch.randint(-128, 128, (N, K), dtype=torch.int8).to(in_dtype).cuda()
        Bias = torch.randint(-128, 128, (N,), dtype=torch.int32).to(accum_dtype).cuda()
    elif in_dtype in {torch.float8_e4m3fn, torch.float8_e5m2}:
        A = torch.randn(M, K).to(in_dtype).cuda()
        B = torch.randn(N, K).to(in_dtype).cuda()
        Bias = torch.randn(N).to(accum_dtype).cuda()
    else:
        A = torch.randn(M, K).to(in_dtype).cuda() - 0.5
        B = torch.randn(N, K).to(in_dtype).cuda() - 0.5
        Bias = torch.randn(N).to(accum_dtype).cuda() - 0.5

    C = torch.zeros(M, N).to(out_dtype).cuda()

    if with_bias:
        kernel(A, B, Bias, C)
    else:
        kernel(A, B, C)

    ref_c = torch.mm(A.to(torch.float32), B.T.to(torch.float32))
    if with_bias:
        ref_c += Bias.to(torch.float32)
158
    ref_c = ref_c.to(out_dtype)
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    print(C)
    print(ref_c)
    tilelang.testing.torch_assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


@tilelang.testing.requires_cuda
@tilelang.testing.requires_cuda_compute_version(8, 0)
def test_gemv_simt():
    evaluate_gemv_simt(1, 1024, 1024, "float16", "float16", "float16", with_bias=False)
    evaluate_gemv_simt(1, 1024, 1024, "int8", "int32", "int32", with_bias=False)


@tilelang.testing.requires_cuda
@tilelang.testing.requires_cuda_compute_version(8, 9)
def test_gemv_simt_fp8():
174
175
    evaluate_gemv_simt(1, 1024, 1024, "float8_e4m3", "float32", "float32", with_bias=False)
    evaluate_gemv_simt(1, 1024, 1024, "float8_e5m2", "float32", "float32", with_bias=False)
176
177
178
179


if __name__ == "__main__":
    tilelang.testing.main()