"runner/llamarunner/image.go" did not exist on "4879a234c4bd3f2bbc99d9b09c44bd99fc337679"
compare_ops.py 15.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ruff: noqa
"""
Precision comparison tool for CUDA Precise/Fast, Triton, Triton LibDevice, PyTorch, and TileLang operations.
"""

import os
import argparse
import sys
from typing import Dict, Optional, Tuple
import torch
from torch.utils.cpp_extension import load
import triton
import triton.language as tl
from triton.language.extra import libdevice
import tilelang
import tilelang.language as T

from tilelang.contrib import nvcc
from tilelang.utils.target import determine_target

# GPU configuration setup
target = determine_target(return_object=True)
compute_version = nvcc.get_target_compute_version(target)
major, minor = nvcc.parse_compute_version(compute_version)
os.environ["TORCH_CUDA_ARCH_LIST"] = f"{major}.{minor}"

# Operator enumeration - must match OperatorType in C++
OP_NAMES: Dict[int, str] = {
    0: "div",
    1: "reciprocal",
    2: "exp",
    3: "log",
    4: "sin",
    5: "cos",
    6: "sqrt",
    7: "tanh",
    8: "rsqrt",
40
    9: "inv_sqrt",
41
42
43
44
45
46
47
48
49
50
51
}

# Block sizes for kernels
TRITON_BLOCK_SIZE = 1024
TILELANG_BLOCK_M = 32
TILELANG_BLOCK_N = 32
TILELANG_THREADS = 128


def parse_arguments() -> argparse.Namespace:
    """Parse command line arguments."""
52
    parser = argparse.ArgumentParser(description="Precision comparison tool for various CUDA implementations")
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    parser.add_argument("--n", type=int, default=1000000, help="Number of elements to test")
    parser.add_argument("--low", type=float, default=-4.0, help="Lower bound for random values")
    parser.add_argument("--high", type=float, default=4.0, help="Upper bound for random values")
    parser.add_argument("--seed", type=int, default=0, help="Random seed for reproducibility")
    return parser.parse_args()


def initialize_cuda() -> torch.nn.Module:
    """Initialize CUDA and load the custom operators module."""
    if not torch.cuda.is_available():
        print("CUDA is required", file=sys.stderr)
        sys.exit(1)

    return load(
        name="cuda_ops",
        sources=["cuda_ops.cu"],
69
        extra_cuda_cflags=[],  # No fast_math flags
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    )


# Initialize global variables
args = parse_arguments()
torch.manual_seed(args.seed)
mod = initialize_cuda()
device = torch.device("cuda")
n = args.n
low, high = args.low, args.high


# Triton kernels
@triton.jit
def triton_binary_kernel(x_ptr, y_ptr, out_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
    """Standard Triton kernel for binary operations (div)."""
    pid = tl.program_id(0)
    block_start = pid * BLOCK_SIZE
    offsets = block_start + tl.arange(0, BLOCK_SIZE)
    mask = offsets < n_elements
    x = tl.load(x_ptr + offsets, mask=mask)
    y = tl.load(y_ptr + offsets, mask=mask)

    result = x / y  # Division operation
    tl.store(out_ptr + offsets, result, mask=mask)


@triton.jit
def triton_libdevice_binary_kernel(x_ptr, y_ptr, out_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
    """LibDevice Triton kernel for binary operations (div)."""
    pid = tl.program_id(0)
    block_start = pid * BLOCK_SIZE
    offsets = block_start + tl.arange(0, BLOCK_SIZE)
    mask = offsets < n_elements
    x = tl.load(x_ptr + offsets, mask=mask)
    y = tl.load(y_ptr + offsets, mask=mask)

    result = libdevice.div_rn(x, y)  # Round to nearest
    tl.store(out_ptr + offsets, result, mask=mask)


@triton.jit
def tl_tanh(x):
    """Triton tanh implementation using sigmoid."""
    return 2 * tl.sigmoid(2 * x) - 1


@triton.jit
def triton_unary_kernel(x_ptr, out_ptr, n_elements, op_id: tl.constexpr, BLOCK_SIZE: tl.constexpr):
    """Standard Triton kernel for unary operations."""
    pid = tl.program_id(0)
    block_start = pid * BLOCK_SIZE
    offsets = block_start + tl.arange(0, BLOCK_SIZE)
    mask = offsets < n_elements
    x = tl.load(x_ptr + offsets, mask=mask)

    if op_id == 1:  # reciprocal
        result = 1.0 / x
    elif op_id == 2:  # exp
        result = tl.exp(x)
    elif op_id == 3:  # log
        result = tl.log(x)
    elif op_id == 4:  # sin
        result = tl.sin(x)
    elif op_id == 5:  # cos
        result = tl.cos(x)
    elif op_id == 6:  # sqrt
        result = tl.sqrt(x)
    elif op_id == 7:  # tanh
        result = tl_tanh(x)
    elif op_id == 8:  # rsqrt
        result = tl.rsqrt(x)
    elif op_id == 9:  # inv_sqrt
        result = 1.0 / tl.sqrt(x)
    else:
        result = x  # Default case

    tl.store(out_ptr + offsets, result, mask=mask)


@triton.jit
151
def triton_libdevice_unary_kernel(x_ptr, out_ptr, n_elements, op_id: tl.constexpr, BLOCK_SIZE: tl.constexpr):
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    """LibDevice Triton kernel for unary operations."""
    pid = tl.program_id(0)
    block_start = pid * BLOCK_SIZE
    offsets = block_start + tl.arange(0, BLOCK_SIZE)
    mask = offsets < n_elements
    x = tl.load(x_ptr + offsets, mask=mask)

    if op_id == 1:  # reciprocal
        result = libdevice.rcp_rn(x)
    elif op_id == 2:  # exp
        result = libdevice.exp(x)
    elif op_id == 3:  # log
        result = libdevice.log(x)
    elif op_id == 4:  # sin
        result = libdevice.sin(x)
    elif op_id == 5:  # cos
        result = libdevice.cos(x)
    elif op_id == 6:  # sqrt
        result = libdevice.sqrt_rn(x)  # Round to nearest
    elif op_id == 7:  # tanh
        result = libdevice.tanh(x)
    elif op_id == 8:  # rsqrt
        result = libdevice.rsqrt_rn(x)
    elif op_id == 9:  # inv_sqrt
        result = libdevice.rcp_rn(libdevice.sqrt_rn(x))
    else:
        result = x  # Default case

    tl.store(out_ptr + offsets, result, mask=mask)


# TileLang kernel generators
def make_tilelang_unary_kernel(M: int, N: int, op_id: int, use_fastmath: bool = False):
    """Generate TileLang unary operation kernel."""

    @T.prim_func
    def tilelang_unary_kernel(
189
190
        A: T.Tensor((M, N), "float32"),
        B: T.Tensor((M, N), "float32"),
191
    ):
192
        with T.Kernel(T.ceildiv(N, TILELANG_BLOCK_N), T.ceildiv(M, TILELANG_BLOCK_M), threads=TILELANG_THREADS) as (bx, by):
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
            for i, j in T.Parallel(TILELANG_BLOCK_M, TILELANG_BLOCK_N):
                row = by * TILELANG_BLOCK_M + i
                col = bx * TILELANG_BLOCK_N + j
                x = A[row, col]

                if op_id == 1:  # reciprocal
                    B[row, col] = 1.0 / x
                elif op_id == 2:  # exp
                    B[row, col] = T.exp(x)
                elif op_id == 3:  # log
                    B[row, col] = T.log(x)
                elif op_id == 4:  # sin
                    B[row, col] = T.sin(x)
                elif op_id == 5:  # cos
                    B[row, col] = T.cos(x)
                elif op_id == 6:  # sqrt
                    B[row, col] = T.sqrt(x)
                elif op_id == 7:  # tanh
                    B[row, col] = T.tanh(x)
                elif op_id == 8:  # rsqrt
                    B[row, col] = T.rsqrt(x)
                elif op_id == 9:  # inv_sqrt
                    B[row, col] = 1.0 / T.sqrt(x)
                else:
                    B[row, col] = x  # Default case

    return tilelang_unary_kernel


def make_tilelang_binary_kernel(M: int, N: int):
    """Generate TileLang binary operation kernel (division)."""

    @T.prim_func
    def tilelang_binary_kernel(
227
228
229
        A: T.Tensor((M, N), "float32"),
        B: T.Tensor((M, N), "float32"),
        C: T.Tensor((M, N), "float32"),
230
    ):
231
        with T.Kernel(T.ceildiv(N, TILELANG_BLOCK_N), T.ceildiv(M, TILELANG_BLOCK_M), threads=TILELANG_THREADS) as (bx, by):
232
233
234
235
236
237
238
239
240
241
            for i, j in T.Parallel(TILELANG_BLOCK_M, TILELANG_BLOCK_N):
                row = by * TILELANG_BLOCK_M + i
                col = bx * TILELANG_BLOCK_N + j
                x = A[row, col]
                y = B[row, col]
                C[row, col] = x / y  # Division operation

    return tilelang_binary_kernel


242
def tilelang_op(x: torch.Tensor, op_id: int, y: Optional[torch.Tensor] = None, use_fastmath: bool = False) -> torch.Tensor:
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    """TileLang operation interface."""
    assert x.is_cuda

    # Reshape 1D tensor to 2D for TileLang kernels
    original_shape = x.shape
    if len(x.shape) == 1:
        x = x.view(1, -1)
        if y is not None:
            y = y.view(1, -1)

    M, N = x.shape

    if op_id == 0:  # Division - binary operation
        assert y is not None, "Division operation requires second operand"
        kernel_func = make_tilelang_binary_kernel(M, N)
        kernel = tilelang.compile(
            kernel_func,
            out_idx=[2],
            target="cuda",
            pass_configs={
                tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: use_fastmath,
264
265
            },
        )
266
267
268
269
270
271
272
273
274
        out = kernel(x, y)
    else:  # Unary operation
        kernel_func = make_tilelang_unary_kernel(M, N, op_id, use_fastmath)
        kernel = tilelang.compile(
            kernel_func,
            out_idx=[1],
            target="cuda",
            pass_configs={
                tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: use_fastmath,
275
276
            },
        )
277
278
279
280
281
282
283
284
285
286
        out = kernel(x)

    # Restore original shape
    return out.view(original_shape)


def triton_op(x: torch.Tensor, op_id: int, y: Optional[torch.Tensor] = None) -> torch.Tensor:
    """Standard Triton operation interface."""
    assert x.is_cuda
    out = torch.empty_like(x)
287
    grid = lambda meta: ((x.numel() + meta["BLOCK_SIZE"] - 1) // meta["BLOCK_SIZE"],)
288
289
290
291
292
293
294
295
296
297

    if op_id == 0:  # Division - binary operation
        assert y is not None, "Division operation requires second operand"
        triton_binary_kernel[grid](x, y, out, x.numel(), BLOCK_SIZE=TRITON_BLOCK_SIZE)
    else:  # Unary operation
        triton_unary_kernel[grid](x, out, x.numel(), op_id, BLOCK_SIZE=TRITON_BLOCK_SIZE)

    return out


298
def triton_libdevice_op(x: torch.Tensor, op_id: int, y: Optional[torch.Tensor] = None) -> torch.Tensor:
299
300
301
    """LibDevice Triton operation interface."""
    assert x.is_cuda
    out = torch.empty_like(x)
302
    grid = lambda meta: ((x.numel() + meta["BLOCK_SIZE"] - 1) // meta["BLOCK_SIZE"],)
303
304
305
306
307
308
309
310
311
312

    if op_id == 0:  # Division - binary operation
        assert y is not None, "Division operation requires second operand"
        triton_libdevice_binary_kernel[grid](x, y, out, x.numel(), BLOCK_SIZE=TRITON_BLOCK_SIZE)
    else:  # Unary operation
        triton_libdevice_unary_kernel[grid](x, out, x.numel(), op_id, BLOCK_SIZE=TRITON_BLOCK_SIZE)

    return out


313
def get_pytorch_reference(x: torch.Tensor, op_id: int, y: Optional[torch.Tensor] = None) -> torch.Tensor:
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    """Get PyTorch reference implementation for the given operation."""
    if op_id == 0:
        assert y is not None, "Division requires second operand"
        return x / y
    elif op_id == 1:
        return torch.reciprocal(x)
    elif op_id == 2:
        return torch.exp(x)
    elif op_id == 3:
        return torch.log(x)
    elif op_id == 4:
        return torch.sin(x)
    elif op_id == 5:
        return torch.cos(x)
    elif op_id == 6:
        return torch.sqrt(x)
    elif op_id == 7:
        return torch.tanh(x)
    elif op_id == 8:
        return torch.rsqrt(x)
    elif op_id == 9:
        return 1 / torch.sqrt(x)
    else:
        raise ValueError(f"Unknown op_id: {op_id}")


def summarize_error(tag: str, output: Optional[torch.Tensor], reference: torch.Tensor) -> None:
    """Summarize and print error statistics for an implementation."""
    if output is None:
        print(f"{tag:<32} FAILED")
        return

    # Convert results to double precision for error calculation
    output_double = output.double()
    reference_double = reference.double() if reference.dtype != torch.float64 else reference

    abs_err = (output_double - reference_double).abs()
    rel_err = abs_err / (reference_double.abs().clamp_min(1e-30))
352
353
354
355
    print(
        f"{tag:<32} max abs: {abs_err.max():.3e}, mean abs: {abs_err.mean():.3e}, "
        f"max rel: {rel_err.max():.3e}, mean rel: {rel_err.mean():.3e}"
    )
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398


# Precision comparison function
def compare(op_id: int, x: torch.Tensor, y: Optional[torch.Tensor] = None) -> None:
    name = OP_NAMES[op_id]
    print(f"\n=== {name} ===")

    # Create double precision version of input data as reference standard
    x_double = x.double()
    y_double = y.double() if y is not None else None

    # Double CUDA Precise as golden standard
    ref_double = torch.empty_like(x_double)
    mod.launch_double_precise_operator(x_double, y_double, ref_double, op_id)

    # CUDA Precise (FP32)
    ref_float = torch.empty_like(x)
    mod.launch_precise_operator(x, y, ref_float, op_id)

    # CUDA Fast
    result_fast = torch.empty_like(ref_float)
    mod.launch_fast_operator(x, y, result_fast, op_id)

    # PyTorch reference
    torch_ref = get_pytorch_reference(x, op_id, y)

    # Test implementations with error handling
    implementations = [
        ("Standard Triton", lambda: triton_op(x, op_id, y)),
        ("LibDevice Triton", lambda: triton_libdevice_op(x, op_id, y)),
        ("TileLang Standard", lambda: tilelang_op(x, op_id, y, use_fastmath=False)),
        ("TileLang Fastmath", lambda: tilelang_op(x, op_id, y, use_fastmath=True)),
    ]

    results = {}
    for name, impl_func in implementations:
        try:
            results[name] = impl_func()
        except Exception as e:
            print(f"{name} failed: {e}")
            results[name] = None

    # Print comparison header
399
    print(f"{'Implementation':<32} {'Max Abs Error':<19} {'Mean Abs Error':<20} {'Max Rel Error':<19} {'Mean Rel Error'}")
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    print("-" * 90)

    # Compare all implementations against double precision reference
    comparisons = [
        ("FP32 Precise vs Double", ref_float),
        ("Triton LibDevice vs Double", results.get("LibDevice Triton")),
        ("TileLang vs Double", results.get("TileLang Standard")),
        ("PyTorch vs Double", torch_ref),
        ("Triton vs Double", results.get("Standard Triton")),
        ("TileLang Fastmath vs Double", results.get("TileLang Fastmath")),
        ("CUDA Fast vs Double", result_fast),
    ]

    for tag, output in comparisons:
        summarize_error(tag, output, ref_double)


417
def generate_test_data(op_id: int, n: int, device: torch.device, low: float, high: float) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    """Generate appropriate test data for each operation."""
    if op_id == 0:  # Division
        x = torch.empty(n, device=device).uniform_(low, high)
        y = torch.empty(n, device=device).uniform_(1e-3, high)  # Avoid division by zero
        return x, y
    elif op_id in (3, 6):  # log and sqrt need positive inputs
        x = torch.empty(n, device=device).uniform_(1e-3, high)
        return x, None
    elif op_id in (8, 9):  # rsqrt and inv_sqrt need positive inputs (use consistent data)
        x = torch.empty(n, device=device).uniform_(1e-3, high)
        return x, None
    elif op_id == 1:  # reciprocal - avoid values close to zero
        x = torch.empty(n, device=device).uniform_(1e-3, high)
        return x, None
    else:  # General case
        x = torch.empty(n, device=device).uniform_(low, high)
        return x, None


def main() -> None:
    """Main execution function."""
439
    print("Precision comparison between CUDA Precise/Fast, Triton, Triton LibDevice, PyTorch, and TileLang")
440
441
442
443
444
445
446
447
448
449
450
451
452
    print("=" * 90)

    for op_id in range(len(OP_NAMES)):
        try:
            x, y = generate_test_data(op_id, n, device, low, high)
            compare(op_id, x, y)
        except Exception as e:
            print(f"Error in {OP_NAMES[op_id]}: {e}")
            continue


if __name__ == "__main__":
    main()