example_dynamic.py 3.71 KB
Newer Older
1
2
3
4
5
6
import tilelang
import tilelang.language as T
import tilelang.testing
from tilelang import tvm as tvm


7
@tilelang.jit(pass_configs={"tl.disable_dynamic_tail_split": True, "tl.dynamic_alignment": 8})
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
def matmul_dynamic_mnk(
    block_M,
    block_N,
    block_K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
):
    M = tvm.te.var("m")
    N = tvm.te.var("n")
    K = tvm.te.var("k")

    A_shape = (K, M) if trans_A else (M, K)
    B_shape = (N, K) if trans_B else (K, N)

    A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)

    @T.prim_func
31
    def dynamic_matmul(
32
33
34
        A: T.Tensor(A_shape, in_dtype),
        B: T.Tensor(B_shape, in_dtype),
        C: T.Tensor((M, N), out_dtype),
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                if trans_A:
                    T.copy(A[k * block_K, by * block_M], A_shared)
                else:
                    T.copy(A[by * block_M, k * block_K], A_shared)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm(A_shared, B_shared, C_local, trans_A, trans_B)
            T.copy(C_local, C[by * block_M, bx * block_N])

53
    return dynamic_matmul
54
55


56
def matmul_dynamic(M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, accum_dtype, num_stages, threads):
57
58
59
    print(
        f"M: {M}, N: {N}, K: {K}, block_M: {block_M}, block_N: {block_N}, block_K: {block_K}, trans_A: {trans_A}, trans_B: {trans_B}, in_dtype: {in_dtype}, out_dtype: {out_dtype}, accum_dtype: {accum_dtype}, num_stages: {num_stages}, threads: {threads}"
    )
60
    kernel = matmul_dynamic_mnk(block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, accum_dtype, num_stages, threads)
61
62

    import torch
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    if trans_A:
        A = torch.rand(K, M, device="cuda", dtype=getattr(torch, in_dtype))
    else:
        A = torch.rand(M, K, device="cuda", dtype=getattr(torch, in_dtype))
    if trans_B:
        B = torch.rand(N, K, device="cuda", dtype=getattr(torch, in_dtype))
    else:
        B = torch.rand(K, N, device="cuda", dtype=getattr(torch, in_dtype))
    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, out_dtype))

    kernel(A, B, C)

    def ref_program(A, B):
        import torch

        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
        C = torch.matmul(A.to(torch.float), B.to(torch.float))
        C = C.to(torch.__getattribute__(out_dtype))
        return C

    # Get Reference Result
    ref_c = ref_program(A, B)

    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)
    print("Kernel output matches PyTorch reference.")

    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Normal)
    latency = profiler.do_bench(input_tensors=[A, B, C])
    print(f"Latency: {latency} ms")


98
def main(M=16384, N=16384, K=16384):
99
100
101
102
103
104
    block_M, block_N, block_K = 128, 128, 32
    trans_A, trans_B = False, False
    in_dtype, out_dtype = "float16", "float16"
    accum_dtype = "float32"
    num_stages = 3
    threads = 128
105
    matmul_dynamic(M, N, K, block_M, block_N, block_K, trans_A, trans_B, in_dtype, out_dtype, accum_dtype, num_stages, threads)
106
107


108
if __name__ == "__main__":
109
    main()