example_retnet.py 9.57 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import argparse
import torch
import tilelang
import tilelang.language as T


def retnet(batch, heads, seq_len, dim_qk, dim_v, block_M, block_N):
    qk_shape = [batch, seq_len, heads, dim_qk]
    v_shape = [batch, seq_len, heads, dim_v]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def main(
15
16
17
18
19
            Q: T.Tensor(qk_shape, dtype),
            K: T.Tensor(qk_shape, dtype),
            V: T.Tensor(v_shape, dtype),
            mask: T.Tensor([heads, seq_len, seq_len], dtype),
            Output: T.Tensor(v_shape, dtype),
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    ):
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=128 * 2) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim_qk], dtype)
            K_shared = T.alloc_shared([block_N, dim_qk], dtype)
            V_shared = T.alloc_shared([block_N, dim_v], dtype)
            mask_shared = T.alloc_shared([block_M, block_N], dtype)
            acc_o_shared = T.alloc_shared([block_M, dim_v], dtype)
            mask_local = T.alloc_fragment([block_M, block_N], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_1 = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_shared = T.alloc_shared([block_M, block_N], dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim_v], accum_dtype)
            abs_sum = T.alloc_fragment([block_M], accum_dtype)
            r_wo_clamp = T.alloc_fragment([block_M], accum_dtype)
            r = T.alloc_fragment([block_M], accum_dtype)
            r_new = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({
                Q_shared: tilelang.layout.make_swizzled_layout(Q_shared),
                mask_shared: tilelang.layout.make_swizzled_layout(mask_shared),
                acc_s_shared: tilelang.layout.make_swizzled_layout(acc_s_shared),
                acc_o_shared: tilelang.layout.make_swizzled_layout(acc_o_shared)
            })

            T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)

            T.fill(r, 0)
            T.fill(r_new, 0)
            T.fill(r_wo_clamp, 0)
            T.fill(acc_o, 0)
            loop_range = T.ceildiv(seq_len, block_N)
            for k in T.Pipelined(loop_range, num_stages=1):
                T.copy(K[bz, k * block_N:(k + 1) * block_N, by, :], K_shared)
                T.clear(acc_s)
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullCol)
                T.copy(mask[by, bx * block_M:(bx + 1) * block_M, k * block_N:(k + 1) * block_N],
                       mask_shared)
                T.copy(mask_shared, mask_local)
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = acc_s[i, j] * mask_local[i, j]
                T.copy(acc_s, acc_s_shared)
                T.copy(acc_s_shared, acc_s_1)
                T.reduce_abssum(acc_s_1, abs_sum, dim=1)
                for i in T.Parallel(block_M):
                    r_wo_clamp[i] = r_wo_clamp[i] + abs_sum[i]
                for i in T.Parallel(block_M):
                    r_new[i] = T.max(r_wo_clamp[i], 1)
                for i, j in T.Parallel(block_M, dim_v):
                    acc_o[i, j] = T.if_then_else(k > 0, acc_o[i, j] * r[i] / r_new[i], acc_o[i, j])
                T.copy(r_new, r)
                for i, j in T.Parallel(block_M, block_N):
                    acc_s_1[i, j] = acc_s_1[i, j] / r_new[i]
                T.copy(acc_s_1, acc_s_cast)
                T.copy(V[bz, k * block_N:(k + 1) * block_N, by, :], V_shared)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
            T.copy(acc_o, acc_o_shared)
            T.copy(acc_o_shared, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])

    return main


def ref_program(Q, K, V, mask):
    qk = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    qkm = qk * mask
    r = qkm.detach().abs().sum(dim=-1, keepdim=True).clamp(min=1.0)
    o = torch.einsum('bhqk,bkhd->bqhd', qkm / r, V)
    return o.to(dtype=torch.float16)


def ref_inference(Q, K, V, prev_kv, prev_scale, decay):
    # Q : batch, seqlen, num_heads, head_dimqk
    # K : batch, seqlen, num_heads, head_dimqk
    # V : batch, seqlen, num_heads, head_dimv
    # prev_kv : batch, num_heads, head_dimv, head_dimqk
    # prev_scale : num_heads, 1, 1
    # decay : num_heads, 1, 1
    seqlen = V.size(1)
    num_heads = V.size(2)
    assert seqlen == 1, "Only support seqlen == 1"

    qr = Q.transpose(1, 2).contiguous()  # batch, num_heads, 1, head_dimqk
    kr = K.transpose(1, 2).contiguous()  # batch, num_heads, 1, head_dimqk
    v = V.transpose(1, 2).transpose(2, 3).contiguous()  # batch, num_heads, head_dimv, 1

    kv = kr * v  # batch, num_heads, head_dimv, head_dimqk
    scale = prev_scale * decay + 1  # num_heads, 1, 1
    kv = prev_kv * (prev_scale.sqrt() * decay / scale.sqrt()).view(
        num_heads, 1, 1) + kv / scale.sqrt().view(num_heads, 1, 1)
    output = torch.sum(qr * kv, dim=3)
    return output


def retnet_inference(batch, heads, dim_qk, dim_v, block_M):
    qk_shape = [batch, 1, heads, dim_qk]
    v_shape = [batch, 1, heads, dim_v]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def main(
121
122
123
124
125
126
127
            Q: T.Tensor(qk_shape, dtype),
            K: T.Tensor(qk_shape, dtype),
            V: T.Tensor(v_shape, dtype),
            prev_kv: T.Tensor([batch, heads, dim_v, dim_qk], dtype),
            prev_scale: T.Tensor([heads], dtype),
            decay: T.Tensor([heads], dtype),
            Output: T.Tensor([batch, heads, dim_v], dtype),
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    ):
        with T.Kernel(T.ceildiv(dim_v, block_M), heads, batch, threads=128) as (bx, by, bz):
            Q_local = T.alloc_fragment([1, dim_qk], dtype)
            K_local = T.alloc_fragment([dim_qk], dtype)
            V_local = T.alloc_fragment([block_M], dtype)
            kv_local = T.alloc_fragment([block_M, dim_qk], accum_dtype)
            prev_kv_local = T.alloc_fragment([block_M, dim_qk], dtype)
            prev_scale_local = T.alloc_fragment([1], dtype)
            decay_local = T.alloc_fragment([1], accum_dtype)
            # scale_local = T.alloc_fragment([1], accum_dtype)
            qkv_local = T.alloc_fragment([block_M, dim_qk], accum_dtype)
            o_local = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({
                prev_scale_local: T.Layout(prev_scale_local.shape, lambda i: i),
                decay_local: T.Layout(decay_local.shape, lambda i: i),
                # scale_local: T.Layout(scale_local.shape, lambda i : i),
                kv_local: T.Fragment(kv_local.shape, lambda i, j: j // 8),
            })

            T.copy(Q[bz, 0, by, :], Q_local)
            T.copy(K[bz, 0, by, :], K_local)
            T.copy(V[bz, 0, by, bx * block_M:(bx + 1) * block_M], V_local)
            T.copy(prev_kv[bz, by, bx * block_M:(bx + 1) * block_M, :], prev_kv_local)
            prev_scale_local[0] = prev_scale[by]
            decay_local[0] = decay[by]
            for i, j in T.Parallel(block_M, dim_qk):
                kv_local[i, j] = K_local[j] * V_local[i]
            for i, j in T.Parallel(block_M, dim_qk):
                kv_local[i, j] += kv_local[i, j]
            for i, j in T.Parallel(block_M, dim_qk):
                kv_local[i, j] += prev_kv_local[i, j] * T.sqrt(prev_scale[by]) * decay[by]
            for i, j in T.Parallel(block_M, dim_qk):
                kv_local[i, j] = kv_local[i, j] / T.sqrt(prev_scale[by] * decay[by] + 1)
            for i, j in T.Parallel(block_M, dim_qk):
                qkv_local[i, j] = Q_local[0, j] * kv_local[i, j]
            T.reduce_sum(qkv_local, o_local, dim=1)
            T.copy(o_local, Output[bz, by, bx * block_M:(bx + 1) * block_M])

    return main


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=1, help='Batch size')
    parser.add_argument('--h', type=int, default=10, help='Number of heads')
    parser.add_argument('--n_ctx', type=int, default=4096, help='Context size')
    parser.add_argument('--dim_qk', type=int, default=256, help='Head dimension')
    parser.add_argument('--dim_v', type=int, default=448, help='Head dimension')
    args = parser.parse_args()
    BATCH, H, N_CTX, dim_qk, dim_v = args.batch, args.h, args.n_ctx, args.dim_qk, args.dim_v
    total_flops = 2.0 * BATCH * H * N_CTX * N_CTX * (dim_qk + dim_v)
    BLOCK_M = 64
    BLOCK_N = 64
    program = retnet(BATCH, H, N_CTX, dim_qk, dim_v, BLOCK_M, BLOCK_N)
183
184
    kernel = tilelang.compile(program, out_idx=[4])
    profiler = kernel.get_profiler(tilelang.TensorSupplyType.Normal)
185
186

    ins = []
187
188
189
    for i in range(len(kernel.params)):
        if i not in kernel.result_idx:
            shape = [int(x) for x in kernel.params[i].shape]
190
191
192
193
            ins.append(torch.empty(shape, device="cuda", dtype=torch.float16).normal_(-0.1, 0.1))

    ref_outs = ref_program(*ins)
    torch.cuda.synchronize()
194
    lib_outs = kernel(*ins)
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    torch.cuda.synchronize()

    if isinstance(lib_outs, torch.Tensor):
        lib_outs = [lib_outs]
    if isinstance(ref_outs, torch.Tensor):
        ref_outs = [ref_outs]
    assert len(lib_outs) == len(ref_outs)

    from tilelang.utils.tensor import torch_assert_close
    for lhs, rhs in zip(lib_outs, ref_outs):
        torch_assert_close(
            lhs,
            rhs,
            rtol=0.01,
            atol=0.01,
            max_mismatched_ratio=0.01,
        )

213
214
    profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01)
    latency = profiler.do_bench(n_warmup=10, n_repeat=10, profiler="torch")
215
216
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))