benchmark_matmul_intrinsic.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import argparse
import logging
from tilelang import tvm as tvm
from tvm import DataType
import tilelang as tl
import tilelang.language as T
from tilelang.intrinsics import get_swizzle_layout
from tilelang.intrinsics.mma_macro_generator import (
    TensorCoreIntrinEmitter,)
from tilelang.transform import simplify_prim_func
from tilelang.autotuner import autotune, jit
import itertools

# Configure logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)


def make_swizzle_layout(shared_buf):
    dtype = shared_buf.dtype
    shape = shared_buf.shape

    can_swizzle = shape[-1] * DataType(dtype).bits == 512
    if not can_swizzle:
        return T.Layout(shape, lambda *args: args)

    def transform_func(i, j):
        new_warp_i, new_warp_j = get_swizzle_layout(i, j, shape[-1], dtype)
        return [new_warp_i, new_warp_j]

    return T.Layout(shape, transform_func)


@simplify_prim_func
def tl_matmul(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    block_row_warps=1,
    block_col_warps=1,
    warp_row_tiles=16,
    warp_col_tiles=16,
    chunk=32,
    stage=2,
    enable_rasteration=False,
):
    assert in_dtype in [
        "float16",
        "int8",
    ], "Currently only float16 and int8 are supported"
    assert out_dtype in [
        "float16",
        "float32",
        "int32",
    ], "Currently only float16, float32 and int32 are supported"

    micro_size_x = micro_size_y = micro_size_k = 16

    if out_dtype == "int32":
        micro_size_k = 32

    # This is a debug config
    # chunk = 32 if in_dtype == "float16" else 64
    shared_scope = "shared.dyn"

    block_M = block_row_warps * warp_row_tiles
    block_N = block_col_warps * warp_col_tiles
    block_K = chunk

    A_shape = (M, K)
    B_shape = (N, K)
    A_shared_shape = (block_M, block_K)
    B_shared_shape = (block_N, block_K)
    C_shared_shape = (
        block_M,
        block_N,
    )

    warp_size = 32
    threads = warp_size * (block_row_warps * block_col_warps)
    local_size_a = (micro_size_x * micro_size_k) // warp_size
    local_size_b = (micro_size_y * micro_size_k) // warp_size
    local_size_c = (micro_size_x * micro_size_y) // warp_size
    warp_rows = warp_row_tiles // micro_size_x
    warp_cols = warp_col_tiles // micro_size_y

    # MMA Wrapper to Auto Generate Code for MMA
    mma_emitter = TensorCoreIntrinEmitter(
        a_dtype=in_dtype,
        b_dtype=in_dtype,
        accum_dtype=accum_dtype,
        a_transposed=False,
        b_transposed=True,
        block_row_warps=block_row_warps,
        block_col_warps=block_col_warps,
        warp_row_tiles=warp_row_tiles,
        warp_col_tiles=warp_col_tiles,
        chunk=chunk,
    )

    @T.prim_func
    def main(
106
107
108
            A: T.Tensor(A_shape, in_dtype),
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):

            A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope)
            C_shared = T.alloc_shared(C_shared_shape, out_dtype, scope=shared_scope)
            A_local = T.alloc_local((warp_rows * local_size_a), in_dtype)
            B_local = T.alloc_local((warp_cols * local_size_b), in_dtype)
            C_local = T.alloc_local((warp_rows * warp_cols * local_size_c), accum_dtype)

            T.annotate_layout({
                A_shared: make_swizzle_layout(A_shared),
                B_shared: make_swizzle_layout(B_shared),
            })

            # Improve L2 Cache
            T.use_swizzle(panel_size=10, enable=enable_rasteration)

            T.clear(C_local)

            for ko in T.Pipelined((K // block_K), num_stages=stage):

                # Load A into shared memory
                for i, k in T.Parallel(block_M, block_K):
                    A_shared[i, k] = A[by * block_M + i, ko * block_K + k]

                # Load B into shared memory
                for j, k in T.Parallel(block_N, block_K):
                    B_shared[j, k] = B[bx * block_N + j, ko * block_K + k]

                for ki in T.serial(0, (block_K // micro_size_k)):

                    # Load A into fragment
                    mma_emitter.ldmatrix_a(A_local, A_shared, ki)

                    # Load B into fragment
                    mma_emitter.ldmatrix_b(B_local, B_shared, ki)

                    # Perform Matrix Multiplication
                    mma_emitter.mma(A_local, B_local, C_local)

            # Perform STMatrix
            mma_emitter.stmatrix(C_local, C_shared)

            # Store shared into global
            for i, j in T.Parallel(block_M, block_N):
                C[by * block_M + i, bx * block_N + j] = C_shared[i, j]

    return main


def ref_program(A, B):
    """Reference matrix multiplication program."""
162
    return A @ B.T
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325


def get_configs(M, N, K, with_roller=False):
    """
    Generate a list of configuration dictionaries that will be used for tuning.
    
    Parameters
    ----------
    with_roller : bool
        Whether to enable bitblas roller to deduce search spaces

    Returns
    -------
    list of dict
        Each configuration dict includes various block sizes, pipeline stages,
        thread numbers, and other parameters to explore during autotuning.
    """
    if with_roller:
        from tilelang.carver.template import MatmulTemplate
        from tilelang.carver.arch import CUDA
        from tilelang.carver.roller.rasterization import NoRasterization
        arch = CUDA("cuda")
        topk = 10

        carve_template = MatmulTemplate(
            M=M,
            N=N,
            K=K,
            in_dtype="float16",
            out_dtype="float16",
            accum_dtype="float16",
        ).with_arch(arch)

        func = carve_template.equivalent_function()
        assert func is not None, "Function is None"

        roller_hints = carve_template.recommend_hints(topk=topk)

        if roller_hints is None:
            raise ValueError("No Roller Hints Found for TensorCore Scheduling")

        configs = []
        for hint in roller_hints:
            config = {}
            block_m, block_n = hint.block
            warp_m, warp_n = hint.warp
            config["block_row_warps"] = block_m // warp_m
            config["block_col_warps"] = block_n // warp_n
            config["warp_row_tiles"] = warp_m
            config["warp_col_tiles"] = warp_n
            config["chunk"] = hint.rstep[0]
            config["stage"] = hint.pipeline_stage
            config["enable_rasteration"] = hint.rasterization_plan is not NoRasterization
            configs.append(config)
        for config in configs:
            print(config)
    else:

        block_rows_warps = [1, 2, 4]
        block_col_warps = [1, 2, 4]
        warp_row_tiles = [16, 32, 64, 128]
        warp_col_tiles = [16, 32, 64, 128]
        chunk = [32, 64, 128, 256]
        stage = [0, 2]
        enable_rasteration = [True, False]
        _configs = list(
            itertools.product(block_rows_warps, block_col_warps, warp_row_tiles, warp_col_tiles,
                              chunk, stage, enable_rasteration))
        configs = [{
            "block_row_warps": c[0],
            "block_col_warps": c[1],
            "warp_row_tiles": c[2],
            "warp_col_tiles": c[3],
            "chunk": c[4],
            "stage": c[5],
            "enable_rasteration": c[6],
        } for c in _configs]

    return configs


def matmul(M,
           N,
           K,
           in_dtype="float16",
           out_dtype="float16",
           accum_dtype="float16",
           with_roller=False):
    """Create an autotuned tensor core matrix multiplication kernel."""

    @autotune(
        configs=get_configs(M, N, K, with_roller),
        keys=[
            "block_row_warps",
            "block_col_warps",
            "warp_row_tiles",
            "warp_col_tiles",
            "chunk",
            "enable_rasteration",
            "stage",
        ],
        warmup=3,
        rep=5,
    )
    @jit(
        out_idx=[2],
        supply_type=tl.TensorSupplyType.Integer,
        ref_prog=ref_program,
        skip_check=True,
        target="auto",
    )
    def kernel(
        block_row_warps=None,
        block_col_warps=None,
        warp_row_tiles=None,
        warp_col_tiles=None,
        chunk=None,
        stage=None,
        enable_rasteration=None,
    ):
        return tl_matmul(
            M,
            N,
            K,
            in_dtype=in_dtype,
            out_dtype=out_dtype,
            accum_dtype=accum_dtype,
            block_row_warps=block_row_warps,
            block_col_warps=block_col_warps,
            warp_row_tiles=warp_row_tiles,
            warp_col_tiles=warp_col_tiles,
            chunk=chunk,
            stage=stage,
            enable_rasteration=enable_rasteration,
        )

    return kernel()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Autotuned TensorCore MatMul Benchmark")
    parser.add_argument("--m", type=int, default=16384, help="Matrix dimension M")
    parser.add_argument("--n", type=int, default=16384, help="Matrix dimension N")
    parser.add_argument("--k", type=int, default=16384, help="Matrix dimension K")
    parser.add_argument(
        "--with_roller",
        type=bool,
        default=False,
        help="Whether to use roller to deduce search spaces")
    parser.add_argument(
        "--dtype", type=str, default="float16", choices=["float16", "int8"], help="Input data type")
    args = parser.parse_args()

    M, N, K = args.m, args.n, args.k
    in_dtype = args.dtype
    out_dtype = "float32" if in_dtype == "int8" else "float16"
    accum_dtype = "float32" if in_dtype == "int8" else "float16"
    with_roller = args.with_roller
    with_roller = True
    # Compute total floating-point operations
    total_flops = 2 * M * N * K

    # Run autotuning
326
327
328
329
    best_result = matmul(M, N, K, in_dtype, out_dtype, accum_dtype, with_roller)
    best_latency = best_result.latency
    best_config = best_result.config
    ref_latency = best_result.ref_latency
330
331
332
333
334
335

    # Print benchmark results
    print(f"Best latency (s): {best_latency}")
    print(f"Best TFlops: {total_flops / best_latency * 1e-9:.3f}")
    print(f"Best config: {best_config}")
    print(f"Reference TFlops: {total_flops / ref_latency * 1e-9:.3f}")