- 10 Oct, 2024 1 commit
-
-
drbh authored
* feat: process token stream before returning to client * fix: expect content in test * fix: improve comparison via ruff lint * fix: return event in all cases * fix: always send event on error, avoid unwraps, refactor and improve tests * fix: prefer no_tool over notify_error to improve reponse * fix: adjust chat input test for no_tool * fix: adjust test expected content --------- Co-authored-by:System administrator <root@ip-10-90-0-186.ec2.internal>
-
- 09 Oct, 2024 2 commits
-
-
Nicolas Patry authored
* Only run 1 valid test. * TRying the tailscale action quickly. * ? * bash spaces. * Remove tailscale. * More quotes. * mnt2 ? * Othername to avoid recursive directories. * Good old tmate. * Remove tmate. * Trying a few things. * Remove some stuff. * Sleep ? * Tmp * busybox * Launcher tgi * Starting hello * Busybox in python * No device. * Removing all variables ? * A un moment donné. * Tmp * Tmp2 * DEvice request, no container name * No device requests * Without pytest. * No pytest. * from env * Start with devices * Attemp #1 * Remove stdin messing * Only 1 test, no container name * Raw tgi * Sending args. * Show pip freeze. * Start downloading with token * Giving HIP devices. * Mount volume + port forward * Without pytest. * No token * Repeated arguments * Wrong kwarg. * On 2 GPUs * Fallback to single shard CI test. * Testing * yaml * Common cache ? * Trailing slash ? * Docker volume split. * Fix docker volume * Fixing ? * ? * Try no devices ? * Flash llama on intel CPU ? * Fix nvidia ? * Temp deactivate intel, activate nvidia ?
-
Daniël de Kok authored
To make sure that everything is formatted with the same black version as CI. I sometimes use isort for new files to get nicely ordered imports, so add it as well. Also set the isort configuration to format in a way that is compatible with black.
-
- 08 Oct, 2024 1 commit
-
-
Daniël de Kok authored
* Add support for fused MoE Marlin for AWQ This uses the updated MoE Marlin kernels from vLLM. * Add integration test for AWQ MoE
-
- 04 Oct, 2024 1 commit
-
-
Daniël de Kok authored
* Add basic FP8 KV cache support This change adds rudimentary FP8 KV cache support. The support is enabled by passing `--kv-cache-dtype fp8_e5m2` to the launcher. Doing so uses this type for the KV cache. However support is still limited: * Only the `fp8_e5m2` type is supported. * The KV cache layout is the same as `float16`/`bfloat16` (HND). * The FP8 KV cache is only supported for FlashInfer. * Loading of scales is not yet supported. * Fix Cargo.toml
-
- 03 Oct, 2024 1 commit
-
- 02 Oct, 2024 2 commits
-
-
drbh authored
* feat: unroll notify_error if no tool is choosen * fix: expect simple message when no tool is selected * fix: improve test to avoid notify_error * fix: improve docs and indicate change in expected response * fix: adjust linting in test file
-
Nicolas Patry authored
* Working loading state. * Preprocessing. * Working state ? (Broke idefics1 temporarily). * Cleaner condition. * Fix idefics. * Updating config, removing TODO * Mllama * Ugrade transformers 4.45 * Flashing mllama. * Starting to get there. * Working state. * Integrations tests for mllama (cutting to 10 tokens because there seems' to be instability after (meaning size of the batch matters. * Updating model link. * Earlier assert. * Fix vlm ? * remove log. * Force ignore all images but last. * Default dtype bfloat16. * Update integration test after switch to bf16. * Remove dead code. * Removed dead code. * Upgrade the flake to latest transformers/tokenizers * Move to hf tgi-nix * Upgrade to 0.5.0
-
- 30 Sep, 2024 2 commits
-
-
drbh authored
* feat: support phi3.5 moe model loading * fix: prefer llama base model and improve rotary logic * feat: return reasonable generation and add integration test * fix: run lint and update docs * fix: rerun lint for openapi docs * fix: prefer do_sample false unless temp is set by user, and update chat tests * fix: small typo adjustments * fix: consolidate long rope paths * fix: revert greedy by default and test changes * Vendor configuration so that we don't have to `trust_remote_code` * Use SparseMoELayer * Add support for dense MoE * Some type annotations * Add the usual model tests * Ruff. --------- Co-authored-by:
Daniël de Kok <me@danieldk.eu> Co-authored-by:
Nicolas Patry <patry.nicolas@protonmail.com>
-
Daniël de Kok authored
This change add support for MoE models that use GPTQ quantization. Currently only models with the following properties are supported: - No `desc_act` with tensor parallelism, unless `group_size=-1`. - No asymmetric quantization. - No AWQ.
-
- 24 Sep, 2024 1 commit
-
-
Nicolas Patry authored
* More tensor cores. * Fixing the logic. * Gemma is modified by this.
-
- 19 Sep, 2024 1 commit
-
-
Nicolas Patry authored
* Stream options. * Fetch stuff from nix integration test for easier testing. * Adding the assert. * Only send the usage when asked for. * Update the docs. * Impure test because we need network. * develop. * Optional usage. * Fixes. * Workflow
-
- 17 Sep, 2024 1 commit
-
-
Daniël de Kok authored
* Move to moe-kernels package and switch to common MoE layer This change introduces the new `moe-kernels` package: - Add `moe-kernels` as a dependency. - Introduce a `SparseMoELayer` module that can be used by MoE models. - Port over Mixtral and Deepseek. * Make `cargo check` pass * Update runner
-
- 16 Sep, 2024 2 commits
-
-
Nicolas Patry authored
* Adding a test for FD. * Fixing flashdecoding (empty batch doesn't work). * Fixing the invalid popping. * Fixing radix with block_size > 1 * Last reference. * Use an actual hash. * Update hash for slice.len() == 1 * Update the locks. * Increasing docker timeout.
-
Daniël de Kok authored
Disable by default because CI runners do not have enough GPUs.
-
- 11 Sep, 2024 2 commits
-
-
Nicolas Patry authored
* Attempting to discard the trufflehog warning. * Attempt to fix trufflehog.
-
Nicolas Patry authored
* Adding prefix test. * [WIP] tmp dump of integration load tests. * Remove other tensor creation. * Fixed the radix tree. Used a slice everywhere in radix.rs to keep the cheap Arc cloning instead of recomputing the input_ids. * Fix parsing * Is it really flashinfer version ? * Remove some comments. * Revert the max prefix hit. * Adding numpy to diff. * Upgraded flashinfer. * Upgrading some stuff. * Are we done yet ? * Minor fixup * Remove 1 log and put back the other. * Add comment for why slot 0 is OK. * Mounting on the job. * Get me a debug branch * Debugging CIs is fun. * Attempt #28 * wip * Tmate. * Praying. * Updating VLM causal model with updated context. * Important line got squashed. * Tmate again. * Fingers crossed. * We want only 1 run of integration tests..... --------- Co-authored-by:Guillaume LEGENDRE <glegendre01@gmail.com>
-
- 06 Sep, 2024 2 commits
-
-
Daniël de Kok authored
-
Daniël de Kok authored
-
- 29 Aug, 2024 1 commit
-
-
Nicolas Patry authored
* Making prefix/flashinfer the default and testing the full release tests. * Include flashinfer in the docker. * Using prebuilt. * Allowing window_left_size (dummy version). * Disabling flashinfer/prefix caching on odd head_dim * Disable prefix caching for lora. * More specific codes. * Update lock * Updating integration tests with new values with FI/FD. Remove paged as a default too, and using FD everywhere. * Update cargo lock ? * Upgrade to 1.80 because of bitstream... * Everywhere 1.80 * Forgot last default place. * Apply suggestions from code review Co-authored-by:
drbh <david.richard.holtz@gmail.com> * Updated flake lock * Tmp * Upgrade resolution system for less errors in resolution. * Remove lambda for cleaner function. * Handling debugger. * OVerride the env in server tests. * Is this enough to make it work ? * This seems to be working. * Downgrade some logs. * Fixing the default for vlm. * Don't enable prefix caching on VLM just yet. * Change `add_special_tokens` in order to have the correct tokens for chat input and not (since it's super important with the prefixing now) * Fixing prefix caching for flashdecoding. * Update all models. * Fixed flashinfer version. * add_special_tokens is internal only * Fixing seqlen with the new vlms. * Fixing the issue with `add_special_tokens` not being passed around. * Fixing the test. * Removing encoder_decoder (seq2seq). * Update the chat test. * Fixing the batching tokenization in flash causal lm. * Truncating left for radix purposes. * Oops this doesn't belong here. * Put back default pure shell. * Update server tests - Default to throughput test in k6 - Use TGI_WIGGLE_ROOM to adjust wiggle room * Only n_heads / process_group.size() are necessary. * Revert the integrationt tests change (seem linked to head_size modification). * Adding error message when assert is violated. * Fixing the free algorithm to handle times where the common prefix is smaller. * Apply suggestions from code review Co-authored-by:
OlivierDehaene <olivier@huggingface.co> * Update server/text_generation_server/layers/attention/common.py Co-authored-by:
OlivierDehaene <olivier@huggingface.co> * Fix disabling prefix caching - Fix windowing checks. * Revert the Cohere tokenizer change (for now using a revision instead). * Fmt. --------- Co-authored-by:
drbh <david.richard.holtz@gmail.com> Co-authored-by:
OlivierDehaene <olivier@huggingface.co>
-
- 27 Aug, 2024 1 commit
-
-
drbh authored
* fix[router]: Fix tools not passed in chat template Signed-off-by:
GitHub <noreply@github.com> * feat: improve default tool serialization and lints * feat: refactor tool logic to include notify_error in prompt and adjust typing * fix: adjust non tool template apply * fix: simplify tool grammar logic and improve schema * feat: avoid skip tool test and avoid empty tool prompts * fix: increase test client timeout for grammar compilation tests --------- Signed-off-by:
GitHub <noreply@github.com> Co-authored-by:
Simone Rossi <simone.rossi.93@gmail.com>
-
- 16 Aug, 2024 2 commits
-
-
Nicolas Patry authored
* All integration tests back everywhere (too many failed CI). * Upgrade integration tests after 12.4 * Attempt to remove the specifed compute cap. * Common arch list. * Punica uses raw ASM which is not valid on 9.0 apparently.
-
Nicolas Patry authored
* Further fixes. * Update the conftest to allow NaN (first logprob). * Fix the condition.
-
- 15 Aug, 2024 2 commits
-
-
Nicolas Patry authored
-
Nicolas Patry authored
* Fixing exl2 and other quanize tests again. * Mark exl2 as non release (so CI tests them, needs to be removed latet). * Fixing exl2 (by disabling cuda graphs) * Fix quantization defaults without cuda graphs on exl2 (linked to new issues with it). * Removing serde override. * Go back to released exl2 and remove log. * Adding warnings for deprecated bitsandbytes + upgrade info to warn.
-
- 12 Aug, 2024 1 commit
-
-
Nicolas Patry authored
* Upgrade fbgemm * Fix fbgemm version
-
- 08 Aug, 2024 1 commit
-
-
drbh authored
* Fix the bug * fix: run lints * fix: small syntax tweak --------- Co-authored-by:Sadra Barikbin <sadraqazvin1@yahoo.com>
-
- 29 Jul, 2024 1 commit
-
-
drbh authored
* fix: adjust test snapshots and small refactors * fix: revert non snapshot changes
-
- 26 Jul, 2024 1 commit
-
-
drbh authored
* feat: add ruff and resolve issue * fix: update client exports and adjust after rebase * fix: adjust syntax to avoid circular import * fix: adjust client ruff settings * fix: lint and refactor import check and avoid model enum as global names * fix: improve fbgemm_gpu check and lints * fix: update lints * fix: prefer comparing model enum over str * fix: adjust lints and ignore specific rules * fix: avoid unneeded quantize check
-
- 25 Jul, 2024 3 commits
-
-
Nicolas Patry authored
-
Daniël de Kok authored
* Fix GPTQ autotune data type to be compatible with Torch 2.4.0 * Update poetry lock file * Fix small PaliGemma logprob differences after the torch update
-
Nicolas Patry authored
* Using g6 instead of g5. * Update the idefics2 snapshot.
-
- 22 Jul, 2024 2 commits
-
-
Nicolas Patry authored
* Softcapping for gemma2. * Less clutter. * No access to transformers config, only config_dict here. * 0.0 is the null value in the C++ API.
-
OlivierDehaene authored
* fix(server): fix fp8 weight loading * fixed scales loading * update snap * revert default dtype
-
- 20 Jul, 2024 1 commit
-
-
Daniël de Kok authored
-
- 19 Jul, 2024 2 commits
-
-
Daniël de Kok authored
Deepseek V2 is a MoE model from Deepseek. Relevant variations compared to other models: - Grouped top-K in expert selection. - mscale in yarn is calculated using the `mscale` and `mscale_all_dim` configuration options. - `mscale_all_dim` is also used in scaling attention softmax. - Permuting of the query/key representations before applying rotary embeddings. - Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`). So, we need weight loads that supports quantized weights. To this end `{Weights,WeightLoader}.get_weight` was added. - The query/key head dimensionality differs from that of the value, so we need to pad during attention. - Heads with size 192, needs an extension to our paged attention fork and we need to ensure that the KV cache is allocated with the correct size. - Shared experts. -
Daniël de Kok authored
* Improve the handling of quantized weights Handling of quantized weights was split between two mechanisms: - For quantized checkpoints, we used the new weight loader infrastructure. - For quantization while loading (EETQ, FP8, bitsandbytes) we instead relied on conditional in `get_linear`. Weight loaders support context managers to selectively load particular layers with different weight loaders, which is useful for models like Idefics2 AWQ, which uses a quantized text model, but unquantized vision and connector models. However, the context manager would be overrided by `get_linear`, which string-checks `quantizer`. Also, the context manager would not work with EETQ, FP8, and bitsandbytes. This change migrates all quantizers to the weight loader infrastructure. This has several benefits: - We can use context managers with all quantizers. - All the implementation details move down to the quantizer layers, `get_linear` does not need to know how to handle quantizer linear layers. - All quantizer weights are strongly typed, we don't pass around raw tensors. - We don't have to pass around the `quantizer` string everywhere. * Exclude non-MLP layers when using FP8 quantization with Llama
-
- 15 Jul, 2024 1 commit
-
-
drbh authored
* feat: simple mistral lora integration tests * fix: include args in docker launcher * fix: disable cuda graphs with lora and warn * fix: adjust docs and precommit issues * fix: re update docs
-
- 05 Jul, 2024 2 commits
-
-
Daniël de Kok authored
* Add more representative Llama GPTQ test The Llama GPTQ test is updated to use a model with the commonly-used quantizer config format and activation sorting. The old test is kept around (but renamed) since it tests the format produced by `text-generation-server quantize`. * Add support for manually triggering a release build
-
Nicolas Patry authored
* Refactor dead code. * First working step. * Remove a lot of duplicated code. * More dead code. * More cleanup. * Fix Santacoder test. * Fixing the simple tests. * Fixing sharding. * Fixes for VLM. * Fixing santacoder (num_kv_heads hardcoded). * Removing more dead code. * Fixing `config.n_head`. * Stopping earlier because of `<end_of_utterance>` in idefics2. * Addresses comments. * Removing the dead code. * Fuse back mistral into FlashCausalLM. * Finish removal. * Fixing docs + causal_lm `batch_class`. * Fixing docs + causal.lm. * Add default to Gemma Causality. * Default value for gemma/gemma2. * Wrong default.
-