- 26 Nov, 2024 1 commit
-
-
jp authored
Fix: typo in model loading code Fix typo in model loading code
-
- 30 Oct, 2024 1 commit
-
-
drbh authored
* feat: add support for qwen2 vl model * feat: fix token padding, enable warmup and process basic request * fix: improve get_position_ids, add lift embed_tokens * fix: remove get_cos_sin_hack dev function * feat: add simple test chat with meesage and text * fix: lint test * fix: adjust positional embeddings for multi dimensional position ids * fix: update docs and lint unused vars * fix: include linted file * fix: add norm after text output * fix: format model file * fix: adjust for ruff lints * fix: remove unused rotate_half * feat: refactors and calc num features * fix: prefer position_ids passed from vlm causal lm and reset ids on batch * fix: adjust get_position_ids if not available and add required args to signatures * fix: adjust resize case for qwen2_vl warmup * fix: avoid qwen2 vl specific paths with qwen2
-
- 23 Oct, 2024 1 commit
-
-
OlivierDehaene authored
* feat: natively support Granite models * Update doc
-
- 14 Oct, 2024 1 commit
-
-
Omar Sanseviero authored
* Small improvements for docs * Update _toctree.yml * Updating the doc (we keep the list actually). --------- Co-authored-by:Nicolas Patry <patry.nicolas@protonmail.com>
-
- 02 Oct, 2024 1 commit
-
-
Nicolas Patry authored
* Working loading state. * Preprocessing. * Working state ? (Broke idefics1 temporarily). * Cleaner condition. * Fix idefics. * Updating config, removing TODO * Mllama * Ugrade transformers 4.45 * Flashing mllama. * Starting to get there. * Working state. * Integrations tests for mllama (cutting to 10 tokens because there seems' to be instability after (meaning size of the batch matters. * Updating model link. * Earlier assert. * Fix vlm ? * remove log. * Force ignore all images but last. * Default dtype bfloat16. * Update integration test after switch to bf16. * Remove dead code. * Removed dead code. * Upgrade the flake to latest transformers/tokenizers * Move to hf tgi-nix * Upgrade to 0.5.0
-
- 30 Sep, 2024 1 commit
-
-
drbh authored
* feat: support phi3.5 moe model loading * fix: prefer llama base model and improve rotary logic * feat: return reasonable generation and add integration test * fix: run lint and update docs * fix: rerun lint for openapi docs * fix: prefer do_sample false unless temp is set by user, and update chat tests * fix: small typo adjustments * fix: consolidate long rope paths * fix: revert greedy by default and test changes * Vendor configuration so that we don't have to `trust_remote_code` * Use SparseMoELayer * Add support for dense MoE * Some type annotations * Add the usual model tests * Ruff. --------- Co-authored-by:
Daniël de Kok <me@danieldk.eu> Co-authored-by:
Nicolas Patry <patry.nicolas@protonmail.com>
-
- 09 Aug, 2024 1 commit
-
-
Vaibhav Srivastav authored
* Minor doc fixes * up. * Other minor updates.
-
- 08 Aug, 2024 1 commit
-
-
drbh authored
* add gptj modeling Signed-off-by:
Wang, Yi A <yi.a.wang@intel.com> * fix: update docs for model addition * fix: adjust syntax typo * fix: adjust syntax typo again --------- Signed-off-by:
Wang, Yi A <yi.a.wang@intel.com> Co-authored-by:
Wang, Yi A <yi.a.wang@intel.com>
-
- 19 Jul, 2024 1 commit
-
-
Daniël de Kok authored
Deepseek V2 is a MoE model from Deepseek. Relevant variations compared to other models: - Grouped top-K in expert selection. - mscale in yarn is calculated using the `mscale` and `mscale_all_dim` configuration options. - `mscale_all_dim` is also used in scaling attention softmax. - Permuting of the query/key representations before applying rotary embeddings. - Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`). So, we need weight loads that supports quantized weights. To this end `{Weights,WeightLoader}.get_weight` was added. - The query/key head dimensionality differs from that of the value, so we need to pad during attention. - Heads with size 192, needs an extension to our paged attention fork and we need to ensure that the KV cache is allocated with the correct size. - Shared experts.
-
- 05 Jul, 2024 1 commit
-
-
Nicolas Patry authored
* Refactor dead code. * First working step. * Remove a lot of duplicated code. * More dead code. * More cleanup. * Fix Santacoder test. * Fixing the simple tests. * Fixing sharding. * Fixes for VLM. * Fixing santacoder (num_kv_heads hardcoded). * Removing more dead code. * Fixing `config.n_head`. * Stopping earlier because of `<end_of_utterance>` in idefics2. * Addresses comments. * Removing the dead code. * Fuse back mistral into FlashCausalLM. * Finish removal. * Fixing docs + causal_lm `batch_class`. * Fixing docs + causal.lm. * Add default to Gemma Causality. * Default value for gemma/gemma2. * Wrong default.
-
- 27 Jun, 2024 1 commit
-
-
Nicolas Patry authored
* Fixing gemma2. * Adding new model.
-
- 14 Jun, 2024 1 commit
-
-
Tiezhen WANG authored
* Update the link for qwen2 * Fix Qwen2 model URL in model table * Fix too eager staging --------- Co-authored-by:Daniël de Kok <me@danieldk.eu>
-
- 22 May, 2024 1 commit
-
-
Nicolas Patry authored
# What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
-
- 17 May, 2024 1 commit
-
-
fxmarty authored
Adds support for AMD Instinct MI300 in TGI. Most changes are: * Support PyTorch TunableOp to pick the GEMM/GEMV kernels for decoding https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cuda/tunable. TunableOp is disabled by default, and can be enabled with `PYTORCH_TUNABLEOP_ENABLED=1`. * Update ROCm dockerfile to PyTorch 2.3 (actually patched with changes from https://github.com/pytorch/pytorch/pull/124362) * Support SILU & Linear custom kernels contributed by AMD * Update vLLM paged attention to https://github.com/fxmarty/rocm-vllm/, branching out of a much more recent commit https://github.com/ROCm/vllm/commit/3489ce7936c5de588916ae3047c44c23c0b0c308 * Support FA2 Triton kernel as recommended by AMD. Can be used by specifying `ROCM_USE_FLASH_ATTN_V2_TRITON=1`. * Update dockerfile to ROCm 6.1 By default, TunableOp tuning results are saved in `/data` (e.g. `/data/tunableop_meta-llama-Llama-2-70b-chat-hf_tp1_rank0.csv`) in order to avoid to have to rerun the tuning at each `docker run`. Example: ``` Validator,PT_VERSION,2.3.0 Validator,ROCM_VERSION,6.1.0.0-82-5fabb4c Validator,HIPBLASLT_VERSION,0.7.0-1549b021 Validator,GCN_ARCH_NAME,gfx942:sramecc+:xnack- Validator,ROCBLAS_VERSION,4.1.0-cefa4a9b-dirty GemmTunableOp_Half_TN,tn_8192_7_28672,Gemm_Rocblas_45475,0.132098 GemmTunableOp_Half_TN,tn_10240_4_8192,Gemm_Rocblas_45546,0.0484431 GemmTunableOp_Half_TN,tn_32000_6_8192,Default,0.149546 GemmTunableOp_Half_TN,tn_32000_3_8192,Gemm_Rocblas_45520,0.147119 GemmTunableOp_Half_TN,tn_8192_3_28672,Gemm_Rocblas_45475,0.132645 GemmTunableOp_Half_TN,tn_10240_3_8192,Gemm_Rocblas_45546,0.0482971 GemmTunableOp_Half_TN,tn_57344_5_8192,Gemm_Rocblas_45520,0.255694 GemmTunableOp_Half_TN,tn_10240_7_8192,Gemm_Rocblas_45517,0.0482522 GemmTunableOp_Half_TN,tn_8192_3_8192,Gemm_Rocblas_45546,0.0444671 GemmTunableOp_Half_TN,tn_8192_5_8192,Gemm_Rocblas_45546,0.0445834 GemmTunableOp_Half_TN,tn_57344_7_8192,Gemm_Rocblas_45520,0.25622 GemmTunableOp_Half_TN,tn_8192_2_28672,Gemm_Rocblas_45475,0.132122 GemmTunableOp_Half_TN,tn_8192_4_8192,Gemm_Rocblas_45517,0.0453191 GemmTunableOp_Half_TN,tn_10240_5_8192,Gemm_Rocblas_45517,0.0482514 GemmTunableOp_Half_TN,tn_8192_5_28672,Gemm_Rocblas_45542,0.133914 GemmTunableOp_Half_TN,tn_8192_2_8192,Gemm_Rocblas_45517,0.0446516 GemmTunableOp_Half_TN,tn_8192_1_28672,Gemm_Hipblaslt_TN_10814,0.131953 GemmTunableOp_Half_TN,tn_10240_2_8192,Gemm_Rocblas_45546,0.0481043 GemmTunableOp_Half_TN,tn_32000_4_8192,Gemm_Rocblas_45520,0.147497 GemmTunableOp_Half_TN,tn_8192_6_28672,Gemm_Rocblas_45529,0.134895 GemmTunableOp_Half_TN,tn_57344_2_8192,Gemm_Rocblas_45520,0.254716 GemmTunableOp_Half_TN,tn_57344_4_8192,Gemm_Rocblas_45520,0.255731 GemmTunableOp_Half_TN,tn_10240_6_8192,Gemm_Rocblas_45517,0.0484816 GemmTunableOp_Half_TN,tn_57344_3_8192,Gemm_Rocblas_45520,0.254701 GemmTunableOp_Half_TN,tn_8192_4_28672,Gemm_Rocblas_45475,0.132159 GemmTunableOp_Half_TN,tn_32000_2_8192,Default,0.147524 GemmTunableOp_Half_TN,tn_32000_5_8192,Default,0.147074 GemmTunableOp_Half_TN,tn_8192_6_8192,Gemm_Rocblas_45546,0.0454045 GemmTunableOp_Half_TN,tn_57344_6_8192,Gemm_Rocblas_45520,0.255582 GemmTunableOp_Half_TN,tn_32000_7_8192,Default,0.146705 GemmTunableOp_Half_TN,tn_8192_7_8192,Gemm_Rocblas_45546,0.0445489 ``` --------- Co-authored-by:
Mohit Sharma <mohit21sharma.ms@gmail.com>
-
- 15 May, 2024 1 commit
-
-
Daniël de Kok authored
# What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> This change adds `FlashGPT2ForCausalLM` and wires it up. The model itself is pretty straightforward, the main difference from other models is that it uses trained position embeddings and that all weight matrices are transposed compared to other models (due to the use of Conv1D in the upstream model). <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [x] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [x] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [x] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. @Narsil <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
-
- 09 Apr, 2024 1 commit
-
-
Nicolas Patry authored
# What does this PR do? - Changed all models to extract `embed_tokens` in order to enable llava to separately call the embeddings and the core model layers. - Added VlmCausalLM to inherit from FlashMistral in order to be maximally supported. The only added logics sits on top and parses images into pixel values, preallocates input_ids space for the image embeddings, and passes them for the model. - Added Clip for the vision tower. - Didn't add flash for the vision tower since there's no padding anyway. - Added heuristic (potentially incomplete) to calculate number of features *before* calculating the clip patches (allows for easier logic reuse of the LLM under the hood). Still needs to be done: - [x] Implement the image parsing in the controller side, to avoid downloading n times per TP shard and also refusing requests too large early and avoid issues where the truncation actually truncates the image. - [ ] Make sure it works with quantization properly. - [x] Make sure it works with TP>1 <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
-
- 18 Mar, 2024 1 commit
-
-
Sachin Varghese authored
# What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> ## Before submitting - [x] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation ). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> Signed-off-by:
Sachin Varghese <sachin.mathew31@gmail.com>
-
- 26 Jan, 2024 2 commits
-
-
fxmarty authored
Tested with ``` CUDA_VISIBLE_DEVICES=0 text-generation-launcher --model-id TheBloke/Llama-2-7B-Chat-GPTQ --quantize gptq EXLLAMA_VERSION=1 CUDA_VISIBLE_DEVICES=0 text-generation-launcher --model-id TheBloke/Llama-2-7B-Chat-GPTQ --quantize gptq CUDA_VISIBLE_DEVICES="0,1" text-generation-launcher --model-id TheBloke/Llama-2-7B-Chat-GPTQ --quantize gptq ``` all with good and identical results on MI210. --------- Co-authored-by:
Felix Marty <felix@hf.co> Co-authored-by:
OlivierDehaene <olivier@huggingface.co> Co-authored-by:
OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
-
Nicolas Patry authored
-
- 09 Jan, 2024 1 commit
-
-
OlivierDehaene authored
-
- 21 Dec, 2023 1 commit
-
-
regisss authored
-
- 04 Dec, 2023 1 commit
-
-
fxmarty authored
As per title
-
- 27 Nov, 2023 1 commit
-
-
fxmarty authored
This PR adds support for AMD Instinct MI210 & MI250 GPUs, with paged attention and FAv2 support. Remaining items to discuss, on top of possible others: * Should we have a `ghcr.io/huggingface/text-generation-inference:1.1.0+rocm` hosted image, or is it too early? * Should we set up a CI on MI210/MI250? I don't have access to the runners of TGI though. * Are we comfortable with those changes being directly in TGI, or do we need a fork? --------- Co-authored-by:
Felix Marty <felix@hf.co> Co-authored-by:
OlivierDehaene <olivier@huggingface.co> Co-authored-by:
Your Name <you@example.com>
-
- 09 Oct, 2023 1 commit
-
-
Omar Sanseviero authored
-
- 28 Sep, 2023 1 commit
-
-
OlivierDehaene authored
-
- 27 Sep, 2023 1 commit
-
-
Merve Noyan authored
Added note on serving supported models from a different folder without re-downloading them. --------- Co-authored-by:Nicolas Patry <patry.nicolas@protonmail.com>
-
- 10 Aug, 2023 1 commit
-
-
Merve Noyan authored
I added ToC for docs v1 & started setting up for doc-builder. cc @Narsil @osanseviero --------- Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com> Co-authored-by:
osanseviero <osanseviero@gmail.com> Co-authored-by:
Mishig <mishig.davaadorj@coloradocollege.edu>
-