1. 26 Jul, 2024 1 commit
    • drbh's avatar
      feat: add ruff and resolve issue (#2262) · bab02ff2
      drbh authored
      * feat: add ruff and resolve issue
      
      * fix: update client exports and adjust after rebase
      
      * fix: adjust syntax to avoid circular import
      
      * fix: adjust client ruff settings
      
      * fix: lint and refactor import check and avoid model enum as global names
      
      * fix: improve fbgemm_gpu check and lints
      
      * fix: update lints
      
      * fix: prefer comparing model enum over str
      
      * fix: adjust lints and ignore specific rules
      
      * fix: avoid unneeded quantize check
      bab02ff2
  2. 25 Jul, 2024 1 commit
  3. 23 Jul, 2024 1 commit
    • Daniël de Kok's avatar
      Add support for repacking AWQ weights for GPTQ-Marlin (#2278) · 9935720c
      Daniël de Kok authored
      * Add support for repacking AWQ weights for GPTQ-Marlin
      
      So far we couldn't support AWQ because virtually all AWQ models use
      symmetric quantization, which GPTQ-Marlin did not suppors. GPTQ-Marlin
      has recently added support AWQ repacking and AWQ asymmetric quantization
      (zero_point=True).
      
      This change updates all GPTQ-Marlin kernels from upstream and wires up
      AWQ support. For now enabling AWQ using Marlin requires running TGI with
      `--quantize gptq`.
      
      * Enable Marlin for supported AWQ configurations by default
      
      This makes the AWQ -> GPTQ repack test redundant, since we are now
      testing this with the regular AWQ test.
      9935720c
  4. 20 Jul, 2024 1 commit
    • OlivierDehaene's avatar
      feat(fp8): use fbgemm kernels and load fp8 weights directly (#2248) · 53ec0b79
      OlivierDehaene authored
      * feat(fp8): add support for fbgemm
      
      * allow loading fp8 weights directly
      
      * update outlines
      
      * fix makefile
      
      * build fbgemm
      
      * avoid circular import and fix dockerfile
      
      * add default dtype
      
      * refactored weights loader
      
      * fix auto conversion
      
      * fix quantization config parsing
      
      * force new nccl on install
      
      * missing get_weights implementation
      
      * increase timeout
      53ec0b79
  5. 19 Jul, 2024 2 commits
    • Daniël de Kok's avatar
      Add support for Deepseek V2 (#2224) · e52be9bb
      Daniël de Kok authored
      Deepseek V2 is a MoE model from Deepseek. Relevant variations
      compared to other models:
      
      - Grouped top-K in expert selection.
      - mscale in yarn is calculated using the `mscale` and `mscale_all_dim`
        configuration options.
      - `mscale_all_dim` is also used in scaling attention softmax.
      - Permuting of the query/key representations before applying rotary
        embeddings.
      - Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`).
        So, we need weight loads that supports quantized weights. To this
        end `{Weights,WeightLoader}.get_weight` was added.
      - The query/key head dimensionality differs from that of the value,
        so we need to pad during attention.
      - Heads with size 192, needs an extension to our paged attention
        fork and we need to ensure that the KV cache is allocated with the
        correct size.
      - Shared experts.
      e52be9bb
    • Daniël de Kok's avatar
      Improve the handling of quantized weights (#2250) · ba291dad
      Daniël de Kok authored
      * Improve the handling of quantized weights
      
      Handling of quantized weights was split between two mechanisms:
      
      - For quantized checkpoints, we used the new weight loader
        infrastructure.
      - For quantization while loading (EETQ, FP8, bitsandbytes) we
        instead relied on conditional in `get_linear`.
      
      Weight loaders support context managers to selectively load
      particular layers with different weight loaders, which is useful
      for models like Idefics2 AWQ, which uses a quantized text model,
      but unquantized vision and connector models. However, the context
      manager would be overrided by `get_linear`, which string-checks
      `quantizer`. Also, the context manager would not work with
      EETQ, FP8, and bitsandbytes.
      
      This change migrates all quantizers to the weight loader infrastructure.
      This has several benefits:
      
      - We can use context managers with all quantizers.
      - All the implementation details move down to the quantizer layers,
        `get_linear` does not need to know how to handle quantizer linear
        layers.
      - All quantizer weights are strongly typed, we don't pass around
        raw tensors.
      - We don't have to pass around the `quantizer` string everywhere.
      
      * Exclude non-MLP layers when using FP8 quantization with Llama
      ba291dad
  6. 12 Jul, 2024 1 commit
    • Daniël de Kok's avatar
      Use symmetric quantization in the `quantize` subcommand (#2120) · dbb23fbf
      Daniël de Kok authored
      Packing of asymmetric quantization is broken, all (q)zeros values
      of `0` get reset to `1`, resulting in a loss of accuracy. So instead
      use symmetric quantization. To be able to distinguish models with
      symmetric and asymmetric quantization, a new config tensor `gptq_sym` is
      added. If this tensor is not present, we assume `sym=False`.
      dbb23fbf
  7. 09 Jul, 2024 1 commit
    • Daniël de Kok's avatar
      Move quantized weight handling out of the `Weights` class (#2194) · 8511669c
      Daniël de Kok authored
      Quantized weights were loaded in the `Weights` class, but this was
      getting quite unwieldy, where every higher level method to load weights
      was a long conditional to cover all the different quantizers.
      
      This change moves loading of quantized weights out of the `Weights`
      class. This is done by defining a simple `WeightsLoader` interface
      that is implemented by `Exl2WeightsLoader`, `GPTQWeightsLoader`,
      and `MarlinWeightsLoader`. These implementations are in the quantizers'
      respective modules. The `Weights` class provides the low-level load
      operations (such as loading tensors or sharded tensors), but delegates
      loads that need quantizer-specific weight processing to a loader. The
      loaders still use the low-level functionality provided by `Weights`.
      
      I initially tried making a hierarchy where a class like `GPTQWeights`
      would inherit from `Weights`. But it is not very flexible (e.g. does
      not work well with the new weight storage mock used in tests) and
      the implicit indirections made the code harder to follow.
      8511669c
  8. 01 Jul, 2024 1 commit
    • Daniël de Kok's avatar
      Use GPTQ-Marlin for supported GPTQ configurations (#2111) · 2ce80194
      Daniël de Kok authored
      GPTQ-Marlin is currently the best-performing kernel for GPTQ models. So
      let's use it by default if the kernels are installed, the GPU supports
      it, and the kernels support the configuration.
      
      For models generated by `text-generation-server quantize`, use
      `sym=False`. This subcommand symmetric quantization since the beginning
      and incorrectly reporting the model to be symmetric will use
      GPTQ-Marlin (which does not support asymmetric quantization).
      2ce80194
  9. 21 Jun, 2024 1 commit
  10. 05 Jun, 2024 2 commits
  11. 31 May, 2024 1 commit
    • Nicolas Patry's avatar
      Fixing exl2 scratch buffer. (#1990) · 5ab4cef6
      Nicolas Patry authored
      # What does this PR do?
      
      <!--
      Congratulations! You've made it this far! You're not quite done yet
      though.
      
      Once merged, your PR is going to appear in the release notes with the
      title you set, so make sure it's a great title that fully reflects the
      extent of your awesome contribution.
      
      Then, please replace this with a description of the change and which
      issue is fixed (if applicable). Please also include relevant motivation
      and context. List any dependencies (if any) that are required for this
      change.
      
      Once you're done, someone will review your PR shortly (see the section
      "Who can review?" below to tag some potential reviewers). They may
      suggest changes to make the code even better. If no one reviewed your PR
      after a week has passed, don't hesitate to post a new comment
      @-mentioning the same persons---sometimes notifications get lost.
      -->
      
      <!-- Remove if not applicable -->
      
      Fixes # (issue)
      
      
      ## Before submitting
      - [ ] This PR fixes a typo or improves the docs (you can dismiss the
      other checks if that's the case).
      - [ ] Did you read the [contributor
      guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
            Pull Request section?
      - [ ] Was this discussed/approved via a Github issue or the
      [forum](https://discuss.huggingface.co/)? Please add a link
            to it if that's the case.
      - [ ] Did you make sure to update the documentation with your changes?
      Here are the
      [documentation
      guidelines](https://github.com/huggingface/transformers/tree/main/docs),
      and
      [here are tips on formatting
      docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
      - [ ] Did you write any new necessary tests?
      
      
      ## Who can review?
      
      Anyone in the community is free to review the PR once the tests have
      passed. Feel free to tag
      members/contributors who may be interested in your PR.
      
      <!-- Your PR will be replied to more quickly if you can figure out the
      right person to tag with @
      
      
      @OlivierDehaene OR @Narsil
      
       -->
      5ab4cef6
  12. 30 May, 2024 1 commit
    • Daniël de Kok's avatar
      Add support for exl2 quantization · 36dd1601
      Daniël de Kok authored
      Mostly straightforward, changes to existing code:
      
      * Wrap quantizer parameters in a small wrapper to avoid passing
        around untyped tuples and needing to repack them as a dict.
      * Move scratch space computation to warmup, because we need the
        maximum input sequence length to avoid allocating huge
        scratch buffers that OOM.
      36dd1601
  13. 13 May, 2024 1 commit
    • Nicolas Patry's avatar
      Refactor layers. (#1866) · fd89d9df
      Nicolas Patry authored
      # What does this PR do?
      
      <!--
      Congratulations! You've made it this far! You're not quite done yet
      though.
      
      Once merged, your PR is going to appear in the release notes with the
      title you set, so make sure it's a great title that fully reflects the
      extent of your awesome contribution.
      
      Then, please replace this with a description of the change and which
      issue is fixed (if applicable). Please also include relevant motivation
      and context. List any dependencies (if any) that are required for this
      change.
      
      Once you're done, someone will review your PR shortly (see the section
      "Who can review?" below to tag some potential reviewers). They may
      suggest changes to make the code even better. If no one reviewed your PR
      after a week has passed, don't hesitate to post a new comment
      @-mentioning the same persons---sometimes notifications get lost.
      -->
      
      <!-- Remove if not applicable -->
      
      Fixes # (issue)
      
      
      ## Before submitting
      - [ ] This PR fixes a typo or improves the docs (you can dismiss the
      other checks if that's the case).
      - [ ] Did you read the [contributor
      guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
            Pull Request section?
      - [ ] Was this discussed/approved via a Github issue or the
      [forum](https://discuss.huggingface.co/)? Please add a link
            to it if that's the case.
      - [ ] Did you make sure to update the documentation with your changes?
      Here are the
      [documentation
      guidelines](https://github.com/huggingface/transformers/tree/main/docs),
      and
      [here are tips on formatting
      docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
      - [ ] Did you write any new necessary tests?
      
      
      ## Who can review?
      
      Anyone in the community is free to review the PR once the tests have
      passed. Feel free to tag
      members/contributors who may be interested in your PR.
      
      <!-- Your PR will be replied to more quickly if you can figure out the
      right person to tag with @
      
      
      @OlivierDehaene OR @Narsil
      
       -->
      fd89d9df