"vscode:/vscode.git/clone" did not exist on "a8523bffa844752f8080e2ee675f91c32e392cf0"
  1. 26 Aug, 2024 1 commit
  2. 20 Aug, 2024 1 commit
    • Nicolas Patry's avatar
      Prefix caching (#2402) · b70ae096
      Nicolas Patry authored
      
      
      * Prefix caching WIP
      
      * Fixing prefix attention.
      
      * Fixing flashinfer import.
      
      * Fixing black.
      
      * Fixing medusa (still wrong outputs, but functional).
      
      * Just medusa values now.
      
      * Fixing medusa without prefix caching.
      
      * Fixing prefix caching.
      
      * Medusa requires reshaping.
      
      * Removing the logs.
      
      * Remove router.nix
      
      * Fixup:
      
      - Remove logs
      - Disable VLMs (they do not work)
      - Disable prefix caching when user wants prefill logprobs.
      
      * Update flake.lock
      
      ---------
      Co-authored-by: default avatarDaniël de Kok <me@danieldk.eu>
      b70ae096
  3. 15 Aug, 2024 1 commit
    • Nicolas Patry's avatar
      Fixing exl2 and other quanize tests again. (#2419) · 57b34958
      Nicolas Patry authored
      * Fixing exl2 and other quanize tests again.
      
      * Mark exl2 as non release (so CI tests them, needs to be removed latet).
      
      * Fixing exl2 (by disabling cuda graphs)
      
      * Fix quantization defaults without cuda graphs on exl2 (linked to new
      issues with it).
      
      * Removing serde override.
      
      * Go back to released exl2 and remove log.
      
      * Adding warnings for deprecated bitsandbytes + upgrade info to warn.
      57b34958
  4. 14 Aug, 2024 1 commit
  5. 13 Aug, 2024 1 commit
  6. 12 Aug, 2024 2 commits
    • drbh's avatar
      feat: validate template variables before apply and improve sliding wi… (#2403) · 155f9c98
      drbh authored
      * feat: validate template variables before apply and improve sliding window check
      
      * fix: improve missing template var test
      155f9c98
    • Daniël de Kok's avatar
      Add support for prefix caching to the v3 router (#2392) · 8deeaca4
      Daniël de Kok authored
      This change adds support for prefix caching to the v3 router. This
      is broken up from the backend support to ease reviewing.
      
      For now prefix caching is only enabled with `USE_PREFIX_CACHING=1`
      in this case, the router will switch to `RadixAllocator`. This
      allocator uses a radix trie to keep track of prefills that were
      seen prior. If a new prefill is a prefix of a previously-seen
      prefil, the router will send a request with `prefix_len>0`, which
      can be used by the backend to decide to reuse KV blocks from the
      cache, rather than recomputing them.
      
      Even though backend support is not added in this PR, the backend
      will still work with prefix caching enabled. The prefix lengths
      are just ignored and not used.
      8deeaca4
  7. 09 Aug, 2024 3 commits
    • Nicolas Patry's avatar
      Using an enum for flash backens (paged/flashdecoding/flashinfer) (#2385) · 7a48a847
      Nicolas Patry authored
      * Using an enum for flash backens (paged/flashdecoding/flashinfer)
      
      * Early exit on server too.
      
      * Clippy.
      
      * Fix clippy and fmt.
      7a48a847
    • Vaibhav Srivastav's avatar
      Update documentation for Supported models (#2386) · b2b9c427
      Vaibhav Srivastav authored
      * Minor doc fixes
      
      * up.
      
      * Other minor updates.
      b2b9c427
    • Daniël de Kok's avatar
      Add FlashInfer support (#2354) · 7830de15
      Daniël de Kok authored
      This change adds support for FlashInfer. FlashInfer can be enabled using
      `FLASH_INFER=1` and is currently only implemented in `FlashCausalLM`.
      Since this functionality is currently only for testing, FlashInfer is
      not installed anywhere yet.
      
      The FlashInfer API is quite different from FlashAttention/vLLM in that
      it requires more global bookkeeping:
      
      * A wrapper class needs to be contstructed (which we just call *state*).
        Since this is fairly expensive (due to pinned host memory allocation),
        we only do this once in a FlashCausalLM instance or for each CUDA
        Graph size.
      * Each model forward call needs to be wrapped in `begin_forward` and
        `end_forward`. This sets up data structures that can be reused for all
        calls to attention for that forward call.
      
      When calling attention, we need access to the state object. To avoid
      passing an argument down the call chain (which would require changes to
      all models), we use a context variable.
      
      Each model forward call is wrapped using a context manager that does all
      the bookkeeping for such a call:
      
      * Set the context variable to the forward call's state.
      * Call `begin_forward` on the state.
      * Yield.
      * Call `end_forward` on the state.
      * Reset the context variable.
      
      We cannot use a single shared global variable for this, since e.g. CUDA
      Graphs of different sizes each have their own state.
      7830de15
  8. 08 Aug, 2024 5 commits
  9. 07 Aug, 2024 1 commit
  10. 06 Aug, 2024 2 commits
  11. 05 Aug, 2024 1 commit
    • drbh's avatar
      fix: attempt forward on flash attn2 to check hardware support (#2335) · 215ed3ad
      drbh authored
      * fix: attempt forward on flash attn2 to check hardware support
      
      * fix: warn window_size_left when using flash attn 1
      
      * fix: prefer version check over test op and avoid window_size_left if not flash attn2
      
      * fix: improve condtional and error message
      
      * fix: update sliding window conditional
      
      * fix: simplify changes and revert model changes
      
      * fix: avoid changing conditional
      
      * fix: typo tweak
      215ed3ad
  12. 01 Aug, 2024 2 commits
  13. 31 Jul, 2024 1 commit
  14. 26 Jul, 2024 2 commits
    • drbh's avatar
      feat: add ruff and resolve issue (#2262) · bab02ff2
      drbh authored
      * feat: add ruff and resolve issue
      
      * fix: update client exports and adjust after rebase
      
      * fix: adjust syntax to avoid circular import
      
      * fix: adjust client ruff settings
      
      * fix: lint and refactor import check and avoid model enum as global names
      
      * fix: improve fbgemm_gpu check and lints
      
      * fix: update lints
      
      * fix: prefer comparing model enum over str
      
      * fix: adjust lints and ignore specific rules
      
      * fix: avoid unneeded quantize check
      bab02ff2
    • Daniël de Kok's avatar
  15. 24 Jul, 2024 3 commits
  16. 23 Jul, 2024 2 commits
  17. 22 Jul, 2024 3 commits
  18. 21 Jul, 2024 1 commit
  19. 20 Jul, 2024 1 commit
    • OlivierDehaene's avatar
      feat(fp8): use fbgemm kernels and load fp8 weights directly (#2248) · 53ec0b79
      OlivierDehaene authored
      * feat(fp8): add support for fbgemm
      
      * allow loading fp8 weights directly
      
      * update outlines
      
      * fix makefile
      
      * build fbgemm
      
      * avoid circular import and fix dockerfile
      
      * add default dtype
      
      * refactored weights loader
      
      * fix auto conversion
      
      * fix quantization config parsing
      
      * force new nccl on install
      
      * missing get_weights implementation
      
      * increase timeout
      53ec0b79
  20. 19 Jul, 2024 6 commits
    • Daniël de Kok's avatar
      Add support for Deepseek V2 (#2224) · e52be9bb
      Daniël de Kok authored
      Deepseek V2 is a MoE model from Deepseek. Relevant variations
      compared to other models:
      
      - Grouped top-K in expert selection.
      - mscale in yarn is calculated using the `mscale` and `mscale_all_dim`
        configuration options.
      - `mscale_all_dim` is also used in scaling attention softmax.
      - Permuting of the query/key representations before applying rotary
        embeddings.
      - Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`).
        So, we need weight loads that supports quantized weights. To this
        end `{Weights,WeightLoader}.get_weight` was added.
      - The query/key head dimensionality differs from that of the value,
        so we need to pad during attention.
      - Heads with size 192, needs an extension to our paged attention
        fork and we need to ensure that the KV cache is allocated with the
        correct size.
      - Shared experts.
      e52be9bb
    • Daniël de Kok's avatar
    • Daniël de Kok's avatar
      3b41e93a
    • Daniël de Kok's avatar
      18db78f2
    • Daniël de Kok's avatar
    • Daniël de Kok's avatar
      Improve the handling of quantized weights (#2250) · ba291dad
      Daniël de Kok authored
      * Improve the handling of quantized weights
      
      Handling of quantized weights was split between two mechanisms:
      
      - For quantized checkpoints, we used the new weight loader
        infrastructure.
      - For quantization while loading (EETQ, FP8, bitsandbytes) we
        instead relied on conditional in `get_linear`.
      
      Weight loaders support context managers to selectively load
      particular layers with different weight loaders, which is useful
      for models like Idefics2 AWQ, which uses a quantized text model,
      but unquantized vision and connector models. However, the context
      manager would be overrided by `get_linear`, which string-checks
      `quantizer`. Also, the context manager would not work with
      EETQ, FP8, and bitsandbytes.
      
      This change migrates all quantizers to the weight loader infrastructure.
      This has several benefits:
      
      - We can use context managers with all quantizers.
      - All the implementation details move down to the quantizer layers,
        `get_linear` does not need to know how to handle quantizer linear
        layers.
      - All quantizer weights are strongly typed, we don't pass around
        raw tensors.
      - We don't have to pass around the `quantizer` string everywhere.
      
      * Exclude non-MLP layers when using FP8 quantization with Llama
      ba291dad