- 18 Nov, 2024 1 commit
-
-
Daniël de Kok authored
* Add support for compressed-tensors w8a8 int checkpoints This change adds a loader for w8a8 int checkpoints. One large benefit of int8 support is that the corresponding cutlass matmul kernels also work on compute capability 7.5. Evaluation on neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w8a8: | Tasks |Version| Filter |n-shot| Metric | |Value | |Stderr| |---------------|------:|----------------|-----:|-----------------------|---|-----:|---|------| |gsm8k_cot_llama| 3|flexible-extract| 8|exact_match |↑ |0.8431|± |0.0100| | | |strict-match | 8|exact_match |↑ |0.8393|± |0.0101| |ifeval | 4|none | 0|inst_level_loose_acc |↑ |0.8597|± | N/A| | | |none | 0|inst_level_strict_acc |↑ |0.8201|± | N/A| | | |none | 0|prompt_level_loose_acc |↑ |0.7967|± |0.0173| | | |none | 0|prompt_level_strict_acc|↑ |0.7468|± |0.0187| Which is the same ballpark as vLLM. As usual, lots of thanks to Neural Magic/vLLM for the kernels. * Always use dynamic input quantization for w8a8 int It's far less flaky and gives better output. * Use marlin-kernels 0.3.5 * Fix a typo Co-authored-by:
drbh <david.richard.holtz@gmail.com> * Small fixes --------- Co-authored-by:
drbh <david.richard.holtz@gmail.com>
-
- 10 Nov, 2024 1 commit
-
-
Daniël de Kok authored
compressed-tensors is a safetensors extension for sparse, quantized tensors. The format is more powerful than earlier AWQ/GPTQ/FP8 quantization, because - Different quantizer configurations can be used for different targets. - The format can specify input/output quantizers in addition to weight quantizers. - Configurable exclusions for quantization. This change adds a dependency on the `compressed-tensors` package for its configuration parsing and layer matching functionality. The following types of quantization are supported in this PR: - W8A16 and W4A16 INT using GPTQ-Marlin kernels. - W8A8 and W8A16 FP using FP8-Marlin and cutlass kernels. Support for other quantization types will be added in subsequent PRs.
-