- 30 May, 2024 1 commit
-
-
huangwb authored
-
- 27 Nov, 2023 1 commit
-
-
fxmarty authored
This PR adds support for AMD Instinct MI210 & MI250 GPUs, with paged attention and FAv2 support. Remaining items to discuss, on top of possible others: * Should we have a `ghcr.io/huggingface/text-generation-inference:1.1.0+rocm` hosted image, or is it too early? * Should we set up a CI on MI210/MI250? I don't have access to the runners of TGI though. * Are we comfortable with those changes being directly in TGI, or do we need a fork? --------- Co-authored-by:
Felix Marty <felix@hf.co> Co-authored-by:
OlivierDehaene <olivier@huggingface.co> Co-authored-by:
Your Name <you@example.com>
-
- 08 Jun, 2023 1 commit
-
-
Nicolas Patry authored
# What does this PR do? Reworked the loading logic. Idea is to use cleaner loading code: - Remove need for `no_init_weights` - Remove all weird `bnb_linear` and `load_weights` and `post_load_weights`. New code layout: - New class `Weights` in charge of handling loading the weights from multiple files into appropiate tensors (potentially sharded) - TP layers now are "shells", they contain the code to know what kind of sharding we need + eventual `all_reduce`. They do not inherit from linear, but they contain some kind of Linear instead - the contained linear can be either FastLinear, BnbLinear or GPTq Linear next. - All modeling code is explictly made for sharding, process group is just no-ops for non sharded code (removes a lot of test cases)  --------- Co-authored-by:
Ubuntu <ubuntu@ip-172-31-41-161.taildb5d.ts.net> Co-authored-by:
Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by:
OlivierDehaene <olivier@huggingface.co> Co-authored-by:
OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com>
-