Unverified Commit 895c5f15 authored by OlivierDehaene's avatar OlivierDehaene Committed by GitHub
Browse files

feat(server): only compute prefill logprobs when asked (#406)

Close #288
parent 83b84486
......@@ -3,6 +3,7 @@ install-server:
install-integration-tests:
cd integration-tests && pip install -r requirements.txt
cd clients/python && pip install .
install-router:
cd router && cargo install --path .
......
......@@ -136,6 +136,7 @@ async fn prefill(
let requests = (0..batch_size)
.map(|id| Request {
id: id.into(),
prefill_logprobs: false,
inputs: sequence.clone(),
truncate: sequence_length,
parameters: Some(parameters.clone()),
......
......@@ -107,8 +107,42 @@ print(text)
### Types
```python
# Prompt tokens
class PrefillToken:
# Request Parameters
class Parameters:
# Activate logits sampling
do_sample: bool
# Maximum number of generated tokens
max_new_tokens: int
# The parameter for repetition penalty. 1.0 means no penalty.
# See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
repetition_penalty: Optional[float]
# Whether to prepend the prompt to the generated text
return_full_text: bool
# Stop generating tokens if a member of `stop_sequences` is generated
stop: List[str]
# Random sampling seed
seed: Optional[int]
# The value used to module the logits distribution.
temperature: Optional[float]
# The number of highest probability vocabulary tokens to keep for top-k-filtering.
top_k: Optional[int]
# If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
# higher are kept for generation.
top_p: Optional[float]
# truncate inputs tokens to the given size
truncate: Optional[int]
# Typical Decoding mass
# See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
typical_p: Optional[float]
# Generate best_of sequences and return the one if the highest token logprobs
best_of: Optional[int]
# Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
watermark: bool
# Get decoder input token logprobs and ids
decoder_input_details: bool
# Decoder input tokens
class InputToken:
# Token ID from the model tokenizer
id: int
# Token text
......@@ -151,8 +185,8 @@ class BestOfSequence:
generated_tokens: int
# Sampling seed if sampling was activated
seed: Optional[int]
# Prompt tokens
prefill: List[PrefillToken]
# Decoder input tokens, empty if decoder_input_details is False
prefill: List[InputToken]
# Generated tokens
tokens: List[Token]
......@@ -165,8 +199,8 @@ class Details:
generated_tokens: int
# Sampling seed if sampling was activated
seed: Optional[int]
# Prompt tokens
prefill: List[PrefillToken]
# Decoder input tokens, empty if decoder_input_details is False
prefill: List[InputToken]
# Generated tokens
tokens: List[Token]
# Additional sequences when using the `best_of` parameter
......
[tool.poetry]
name = "text-generation"
version = "0.5.2"
version = "0.6.0"
description = "Hugging Face Text Generation Python Client"
license = "Apache-2.0"
authors = ["Olivier Dehaene <olivier@huggingface.co>"]
......
......@@ -2,28 +2,30 @@ import pytest
from text_generation import Client, AsyncClient
from text_generation.errors import NotFoundError, ValidationError
from text_generation.types import FinishReason, PrefillToken, Token
from text_generation.types import FinishReason, InputToken
def test_generate(flan_t5_xxl_url, hf_headers):
client = Client(flan_t5_xxl_url, hf_headers)
response = client.generate("test", max_new_tokens=1)
response = client.generate("test", max_new_tokens=1, decoder_input_details=True)
assert response.generated_text == ""
assert response.details.finish_reason == FinishReason.Length
assert response.details.generated_tokens == 1
assert response.details.seed is None
assert len(response.details.prefill) == 1
assert response.details.prefill[0] == PrefillToken(id=0, text="<pad>", logprob=None)
assert response.details.prefill[0] == InputToken(id=0, text="<pad>", logprob=None)
assert len(response.details.tokens) == 1
assert response.details.tokens[0].id == 3
assert response.details.tokens[0].text == ""
assert response.details.tokens[0].text == " "
assert not response.details.tokens[0].special
def test_generate_best_of(flan_t5_xxl_url, hf_headers):
client = Client(flan_t5_xxl_url, hf_headers)
response = client.generate("test", max_new_tokens=1, best_of=2, do_sample=True)
response = client.generate(
"test", max_new_tokens=1, best_of=2, do_sample=True, decoder_input_details=True
)
assert response.details.seed is not None
assert response.details.best_of_sequences is not None
......@@ -73,17 +75,19 @@ def test_generate_stream_validation_error(flan_t5_xxl_url, hf_headers):
@pytest.mark.asyncio
async def test_generate_async(flan_t5_xxl_url, hf_headers):
client = AsyncClient(flan_t5_xxl_url, hf_headers)
response = await client.generate("test", max_new_tokens=1)
response = await client.generate(
"test", max_new_tokens=1, decoder_input_details=True
)
assert response.generated_text == ""
assert response.details.finish_reason == FinishReason.Length
assert response.details.generated_tokens == 1
assert response.details.seed is None
assert len(response.details.prefill) == 1
assert response.details.prefill[0] == PrefillToken(id=0, text="<pad>", logprob=None)
assert response.details.prefill[0] == InputToken(id=0, text="<pad>", logprob=None)
assert len(response.details.tokens) == 1
assert response.details.tokens[0].id == 3
assert response.details.tokens[0].text == ""
assert response.details.tokens[0].text == " "
assert not response.details.tokens[0].special
......@@ -91,7 +95,7 @@ async def test_generate_async(flan_t5_xxl_url, hf_headers):
async def test_generate_async_best_of(flan_t5_xxl_url, hf_headers):
client = AsyncClient(flan_t5_xxl_url, hf_headers)
response = await client.generate(
"test", max_new_tokens=1, best_of=2, do_sample=True
"test", max_new_tokens=1, best_of=2, do_sample=True, decoder_input_details=True
)
assert response.details.seed is not None
......
......@@ -74,6 +74,7 @@ class Client:
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: bool = False,
decoder_input_details: bool = False,
) -> Response:
"""
Given a prompt, generate the following text
......@@ -110,6 +111,8 @@ class Client:
See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
watermark (`bool`):
Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
decoder_input_details (`bool`):
Return the decoder input token logprobs and ids
Returns:
Response: generated response
......@@ -130,6 +133,7 @@ class Client:
truncate=truncate,
typical_p=typical_p,
watermark=watermark,
decoder_input_details=decoder_input_details,
)
request = Request(inputs=prompt, stream=False, parameters=parameters)
......@@ -202,6 +206,7 @@ class Client:
parameters = Parameters(
best_of=None,
details=True,
decoder_input_details=False,
do_sample=do_sample,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
......@@ -311,6 +316,7 @@ class AsyncClient:
truncate: Optional[int] = None,
typical_p: Optional[float] = None,
watermark: bool = False,
decoder_input_details: bool = False,
) -> Response:
"""
Given a prompt, generate the following text asynchronously
......@@ -347,6 +353,8 @@ class AsyncClient:
See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information
watermark (`bool`):
Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
decoder_input_details (`bool`):
Return the decoder input token logprobs and ids
Returns:
Response: generated response
......@@ -355,6 +363,7 @@ class AsyncClient:
parameters = Parameters(
best_of=best_of,
details=True,
decoder_input_details=decoder_input_details,
do_sample=do_sample,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
......@@ -437,6 +446,7 @@ class AsyncClient:
parameters = Parameters(
best_of=None,
details=True,
decoder_input_details=False,
do_sample=do_sample,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
......
......@@ -37,6 +37,8 @@ class Parameters(BaseModel):
watermark: bool = False
# Get generation details
details: bool = False
# Get decoder input token logprobs and ids
decoder_input_details: bool = False
@validator("best_of")
def valid_best_of(cls, field_value, values):
......@@ -129,8 +131,8 @@ class Request(BaseModel):
return field_value
# Prompt tokens
class PrefillToken(BaseModel):
# Decoder input tokens
class InputToken(BaseModel):
# Token ID from the model tokenizer
id: int
# Token text
......@@ -173,8 +175,8 @@ class BestOfSequence(BaseModel):
generated_tokens: int
# Sampling seed if sampling was activated
seed: Optional[int]
# Prompt tokens
prefill: List[PrefillToken]
# Decoder input tokens, empty if decoder_input_details is False
prefill: List[InputToken]
# Generated tokens
tokens: List[Token]
......@@ -187,8 +189,8 @@ class Details(BaseModel):
generated_tokens: int
# Sampling seed if sampling was activated
seed: Optional[int]
# Prompt tokens
prefill: List[PrefillToken]
# Decoder input tokens, empty if decoder_input_details is False
prefill: List[InputToken]
# Generated tokens
tokens: List[Token]
# Additional sequences when using the `best_of` parameter
......
......@@ -16,7 +16,7 @@ from syrupy.extensions.json import JSONSnapshotExtension
from aiohttp import ClientConnectorError, ClientOSError, ServerDisconnectedError
from text_generation import AsyncClient
from text_generation.types import Response, Details, PrefillToken, Token, BestOfSequence
from text_generation.types import Response, Details, InputToken, Token, BestOfSequence
DOCKER_IMAGE = os.getenv("DOCKER_IMAGE", None)
HUGGING_FACE_HUB_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN", None)
......@@ -62,7 +62,7 @@ class ResponseComparator(JSONSnapshotExtension):
and token.special == other.special
)
def eq_prefill_token(prefill_token: PrefillToken, other: PrefillToken) -> bool:
def eq_prefill_token(prefill_token: InputToken, other: InputToken) -> bool:
try:
return (
prefill_token.id == other.id
......@@ -332,7 +332,10 @@ def generate_load():
client: AsyncClient, prompt: str, max_new_tokens: int, n: int
) -> List[Response]:
futures = [
client.generate(prompt, max_new_tokens=max_new_tokens) for _ in range(n)
client.generate(
prompt, max_new_tokens=max_new_tokens, decoder_input_details=True
)
for _ in range(n)
]
return await asyncio.gather(*futures)
......
......@@ -19,6 +19,7 @@ async def test_bloom_560m(bloom_560, response_snapshot):
"Pour déguster un ortolan, il faut tout d'abord",
max_new_tokens=10,
top_p=0.9,
decoder_input_details=True,
seed=0,
)
......@@ -40,6 +41,7 @@ async def test_bloom_560m_all_params(bloom_560, response_snapshot):
truncate=5,
typical_p=0.9,
watermark=True,
decoder_input_details=True,
seed=0,
)
......
......@@ -19,6 +19,7 @@ async def test_bloom_560m_sharded(bloom_560m_sharded, response_snapshot):
"Pour déguster un ortolan, il faut tout d'abord",
max_new_tokens=10,
top_p=0.9,
decoder_input_details=True,
seed=0,
)
......
......@@ -19,6 +19,7 @@ async def test_flash_falcon(flash_falcon, response_snapshot):
response = await flash_falcon.generate(
"Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
max_new_tokens=10,
decoder_input_details=True,
)
assert response.details.generated_tokens == 10
......@@ -40,6 +41,7 @@ async def test_flash_falcon_all_params(flash_falcon, response_snapshot):
truncate=5,
typical_p=0.9,
watermark=True,
decoder_input_details=True,
seed=0,
)
......
......@@ -16,7 +16,9 @@ async def flash_llama(flash_llama_handle):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama(flash_llama, response_snapshot):
response = await flash_llama.generate("Test request", max_new_tokens=10)
response = await flash_llama.generate(
"Test request", max_new_tokens=10, decoder_input_details=True
)
assert response.details.generated_tokens == 10
assert response == response_snapshot
......@@ -37,6 +39,7 @@ async def test_flash_llama_all_params(flash_llama, response_snapshot):
truncate=5,
typical_p=0.9,
watermark=True,
decoder_input_details=True,
seed=0,
)
......
......@@ -18,6 +18,7 @@ async def test_flash_neox(flash_neox, response_snapshot):
response = await flash_neox.generate(
"<|USER|>What's your mood today?<|ASSISTANT|>",
max_new_tokens=10,
decoder_input_details=True,
)
assert response.details.generated_tokens == 10
......
......@@ -18,6 +18,7 @@ async def test_flash_neox(flash_neox_sharded, response_snapshot):
response = await flash_neox_sharded.generate(
"<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>",
max_new_tokens=10,
decoder_input_details=True,
)
assert response.details.generated_tokens == 10
......
......@@ -15,7 +15,9 @@ async def flash_santacoder(flash_santacoder_handle):
@pytest.mark.asyncio
async def test_flash_santacoder(flash_santacoder, response_snapshot):
response = await flash_santacoder.generate("def print_hello", max_new_tokens=10)
response = await flash_santacoder.generate(
"def print_hello", max_new_tokens=10, decoder_input_details=True
)
assert response.details.generated_tokens == 10
assert response == response_snapshot
......
......@@ -16,7 +16,9 @@ async def flash_starcoder(flash_starcoder_handle):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_starcoder(flash_starcoder, response_snapshot):
response = await flash_starcoder.generate("def print_hello", max_new_tokens=10)
response = await flash_starcoder.generate(
"def print_hello", max_new_tokens=10, decoder_input_details=True
)
assert response.details.generated_tokens == 10
assert response == response_snapshot
......@@ -26,7 +28,12 @@ async def test_flash_starcoder(flash_starcoder, response_snapshot):
@pytest.mark.private
async def test_flash_starcoder_default_params(flash_starcoder, response_snapshot):
response = await flash_starcoder.generate(
"def print_hello", max_new_tokens=60, temperature=0.2, top_p=0.95, seed=0
"def print_hello",
max_new_tokens=60,
temperature=0.2,
top_p=0.95,
decoder_input_details=True,
seed=0,
)
assert response.details.generated_tokens == 60
......
......@@ -19,6 +19,7 @@ async def test_mt0_base(mt0_base, response_snapshot):
"Why is the sky blue?",
max_new_tokens=10,
top_p=0.9,
decoder_input_details=True,
seed=0,
)
......@@ -40,6 +41,7 @@ async def test_mt0_base_all_params(mt0_base, response_snapshot):
truncate=5,
typical_p=0.9,
watermark=True,
decoder_input_details=True,
seed=0,
)
......
......@@ -18,6 +18,7 @@ async def test_t5_sharded(t5_sharded, response_snapshot):
response = await t5_sharded.generate(
"Please answer the following question. What is the boiling point of Nitrogen?",
max_new_tokens=10,
decoder_input_details=True,
)
assert response == response_snapshot
......
syrupy
text-generation==0.5.2
text-generation
pytest
pytest-asyncio==0.17.2
docker
\ No newline at end of file
......@@ -87,6 +87,8 @@ message Request {
NextTokenChooserParameters parameters = 4;
/// Stopping Criteria Parameters
StoppingCriteriaParameters stopping_parameters = 5;
/// Return prefill logprobs
bool prefill_logprobs = 6;
}
message Batch {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment