Commit 4a6d5aa1 authored by xuxzh1's avatar xuxzh1 🎱
Browse files

update README

parent 12494cf5
<div align="center"> <div align="center"><strong>Text Generation Inference </strong></div>
<a href="https://www.youtube.com/watch?v=jlMAX2Oaht0"> ## 简介
<img width=560 width=315 alt="Making TGI deployment optimal" src="https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png"> Text Generation Inference(TGI)是一个用 Rust 和 Python 编写的框架,用于部署和提供LLM模型的推理服务。TGI为很多大模型提供了高性能的推理服务,如LLama,Falcon,BLOOM,Baichuan,Qwen等。
</a>
## 支持模型列表
# Text Generation Inference
- [Deepseek V2](https://huggingface.co/deepseek-ai/DeepSeek-V2)
<a href="https://github.com/huggingface/text-generation-inference"> - [Idefics 2](https://huggingface.co/HuggingFaceM4/idefics2-8b) (Multimodal)
<img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social"> - [Llava Next (1.6)](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) (Multimodal)
</a> - [Llama](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f)
<a href="https://huggingface.github.io/text-generation-inference"> - [Phi 3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
<img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational"> - [Granite](https://huggingface.co/ibm-granite/granite-3.0-8b-instruct)
</a> - [Gemma](https://huggingface.co/google/gemma-7b)
- [PaliGemma](https://huggingface.co/google/paligemma-3b-pt-224)
A Rust, Python and gRPC server for text generation inference. Used in production at [Hugging Face](https://huggingface.co) - [Gemma2](https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315)
to power Hugging Chat, the Inference API and Inference Endpoint. - [Cohere](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
- [Dbrx](https://huggingface.co/databricks/dbrx-instruct)
</div> - [Mamba](https://huggingface.co/state-spaces/mamba-2.8b-slimpj)
- [Mistral](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407)
## Table of contents - [Mixtral](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1)
- [Gpt Bigcode](https://huggingface.co/bigcode/gpt_bigcode-santacoder)
- [Get Started](#get-started) - [Phi](https://huggingface.co/microsoft/phi-1_5)
- [Docker](#docker) - [PhiMoe](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct)
- [API documentation](#api-documentation) - [Baichuan](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat)
- [Using a private or gated model](#using-a-private-or-gated-model) - [Falcon](https://huggingface.co/tiiuae/falcon-7b-instruct)
- [A note on Shared Memory (shm)](#a-note-on-shared-memory-shm) - [StarCoder 2](https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1)
- [Distributed Tracing](#distributed-tracing) - [Qwen 2](https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f)
- [Architecture](#architecture) - [Qwen 2 VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d)
- [Local install](#local-install) - [Opt](https://huggingface.co/facebook/opt-6.7b)
- [Local install (Nix)](#local-install-nix) - [T5](https://huggingface.co/google/flan-t5-xxl)
- [Optimized architectures](#optimized-architectures) - [Galactica](https://huggingface.co/facebook/galactica-120b)
- [Run locally](#run-locally) - [SantaCoder](https://huggingface.co/bigcode/santacoder)
- [Run](#run) - [Bloom](https://huggingface.co/bigscience/bloom-560m)
- [Quantization](#quantization) - [Mpt](https://huggingface.co/mosaicml/mpt-7b-instruct)
- [Develop](#develop) - [Gpt2](https://huggingface.co/openai-community/gpt2)
- [Testing](#testing) - [Gpt Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
- [Gptj](https://huggingface.co/EleutherAI/gpt-j-6b)
Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as: - [Idefics](https://huggingface.co/HuggingFaceM4/idefics-9b) (Multimodal)
- [Mllama](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) (Multimodal)
- Simple launcher to serve most popular LLMs
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
- Tensor Parallelism for faster inference on multiple GPUs ## 环境要求
- Token streaming using Server-Sent Events (SSE) + Python 3.10
- Continuous batching of incoming requests for increased total throughput + DTK 24.04.3
- [Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) compatible with Open AI Chat Completion API + torch 2.1.0
- Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
- Quantization with : ### 使用源码编译方式安装
- [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
- [GPT-Q](https://arxiv.org/abs/2210.17323) #### 编译环境准备
- [EETQ](https://github.com/NetEase-FuXi/EETQ)
- [AWQ](https://github.com/casper-hansen/AutoAWQ) 有两种方式安装准备环境
- [Marlin](https://github.com/IST-DASLab/marlin) ##### 方式一:
- [fp8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/)
- [Safetensors](https://github.com/huggingface/safetensors) weight loading ### **TODO**
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor)) ##### 方式二:
- Stop sequences
- Log probabilities 基于光源pytorch2.1.0基础镜像环境:镜像下载地址:[https://sourcefind.cn/#/image/dcu/pytorch](https://sourcefind.cn/#/image/dcu/pytorch),根据pytorch2.1.0、python、dtk及系统下载对应的镜像版本。pytorch2.1.0镜像里已经安装了trition,flash-attn
- [Speculation](https://huggingface.co/docs/text-generation-inference/conceptual/speculation) ~2x latency
- [Guidance/JSON](https://huggingface.co/docs/text-generation-inference/conceptual/guidance). Specify output format to speed up inference and make sure the output is valid according to some specs.. 1. 安装Rust
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance
### Hardware support
- [Nvidia](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference)
- [AMD](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference) (-rocm)
- [Inferentia](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference)
- [Intel GPU](https://github.com/huggingface/text-generation-inference/pull/1475)
- [Gaudi](https://github.com/huggingface/tgi-gaudi)
- [Google TPU](https://huggingface.co/docs/optimum-tpu/howto/serving)
## Get Started
### Docker
For a detailed starting guide, please see the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour). The easiest way of getting started is using the official Docker container:
```shell
model=HuggingFaceH4/zephyr-7b-beta
# share a volume with the Docker container to avoid downloading weights every run
volume=$PWD/data
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
3.0.0 ghcr.io/huggingface/text-generation-inference:3.0.0 --model-id $model
```
And then you can make requests like
```bash
curl 127.0.0.1:8080/generate_stream \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json'
```
You can also use [TGI's Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) to obtain Open AI Chat Completion API compatible responses.
```bash
curl localhost:8080/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.0-rocm --model-id $model` instead of the command above.
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
```
text-generation-launcher --help
```
### API documentation
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).
### Using a private or gated model
You have the option to utilize the `HF_TOKEN` environment variable for configuring the token employed by
`text-generation-inference`. This allows you to gain access to protected resources.
For example, if you want to serve the gated Llama V2 model variants:
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
3. Export `HF_TOKEN=<your cli READ token>`
or with Docker:
```shell
model=meta-llama/Meta-Llama-3.1-8B-Instruct
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.0 --model-id $model
```
### A note on Shared Memory (shm)
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.
In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.
To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.
If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:
```yaml
- name: shm
emptyDir:
medium: Memory
sizeLimit: 1Gi
```
and mounting it to `/dev/shm`.
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
this will impact performance.
### Distributed Tracing
`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument. The default service name can be
overridden with the `--otlp-service-name` argument
### Architecture
![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png)
Detailed blogpost by Adyen on TGI inner workings: [LLM inference at scale with TGI (Martin Iglesias Goyanes - Adyen, 2024)](https://www.adyen.com/knowledge-hub/llm-inference-at-scale-with-tgi)
### Local install
You can also opt to install `text-generation-inference` locally.
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
Python 3.9, e.g. using `conda`:
```shell ```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
conda create -n text-generation-inference python=3.11
conda activate text-generation-inference
``` ```
You may also need to install Protoc. 2. 安装Protoc
On Linux:
```shell ```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
...@@ -217,115 +71,74 @@ sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc ...@@ -217,115 +71,74 @@ sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*' sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP rm -f $PROTOC_ZIP
``` ```
3. 安装TGI Service
On MacOS, using Homebrew: ```bash
git clone http://developer.hpccube.com/codes/OpenDAS/text-generation-inference.git # 分支进行切换-b v3.0.0
```shell cd text-generation-inference
brew install protobuf #安装exllama
``` cd server/exllamav2_kernels
python setup.py install #安装exllmav2 kernels
Then run: cd ../.. #回到项目根目录
source $HOME/.cargo/env
```shell BUILD_EXTENSIONS=True make install #安装text-generation服务
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels ```
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 4. 安装benchmark
```bash
cd text-generation-inference
make install-benchmark
``` ```
注意:若安装过程过慢,可以通过如下命令修改默认源提速。
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run: ```bash
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
```shell
sudo apt-get install libssl-dev gcc -y
``` ```
另外,`cargo install` 太慢也可以通过在`~/.cargo/config`中添加源来提速。
### Local install (Nix) ## 查看安装的版本号
```bash
Another option is to install `text-generation-inference` locally using [Nix](https://nixos.org). Currently, text-generation-launcher -V #版本号与官方版本同步
we only support Nix on x86_64 Linux with CUDA GPUs. When using Nix, all dependencies can
be pulled from a binary cache, removing the need to build them locally.
First follow the instructions to [install Cachix and enable the TGI cache](https://app.cachix.org/cache/text-generation-inference).
Setting up the cache is important, otherwise Nix will build many of the dependencies
locally, which can take hours.
After that you can run TGI with `nix run`:
```shell
nix run . -- --model-id meta-llama/Llama-3.1-8B-Instruct
``` ```
**Note:** when you are using Nix on a non-NixOS system, you have to [make some symlinks](https://danieldk.eu/Nix-CUDA-on-non-NixOS-systems#make-runopengl-driverlib-and-symlink-the-driver-library) ## 使用前
to make the CUDA driver libraries visible to Nix packages.
For TGI development, you can use the `impure` dev shell: ```bash
export PYTORCH_TUNABLEOP_ENABLED=0
```shell
nix develop .#impure
# Only needed the first time the devshell is started or after updating the protobuf.
(
cd server
mkdir text_generation_server/pb || true
python -m grpc_tools.protoc -I../proto/v3 --python_out=text_generation_server/pb \
--grpc_python_out=text_generation_server/pb --mypy_out=text_generation_server/pb ../proto/v3/generate.proto
find text_generation_server/pb/ -type f -name "*.py" -print0 -exec sed -i -e 's/^\(import.*pb2\)/from . \1/g' {} \;
touch text_generation_server/pb/__init__.py
)
``` ```
All development dependencies (cargo, Python, Torch), etc. are available in this ## 使用
dev shell.
## Optimized architectures
TGI works out of the box to serve optimized models for all modern models. They can be found in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).
Other architectures are supported on a best-effort basis using:
`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`
or
`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`
## Run locally ```bash
#启动tgi服务
### Run HIP_VISIBLE_DEVICES=2 text-generation-launcher --dtype=float16 --model-id /path/to/model --trust-remote-code --port 3001
#请求服务
```shell curl 127.0.0.1:3001/generate \
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 -X POST \
``` -d '{"inputs":"What is deep learning?","parameters":{"max_new_tokens":100,"temperature":0.7}}' \
-H 'Content-Type: application/json'
#通过python调用的方式
import requests
### Quantization headers = {
"Content-Type": "application/json",
}
You can also run pre-quantized weights (AWQ, GPTQ, Marlin) or on-the-fly quantize weights with bitsandbytes, EETQ, fp8, to reduce the VRAM requirement: data = {
'inputs': 'What is Deep Learning?',
'parameters': {
'max_new_tokens': 20,
},
}
```shell response = requests.post('http://127.0.0.1:3001/generate', headers=headers, json=data)
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize print(response.json())
# {'generated_text': ' Deep Learning is a subset of machine learning where neural networks are trained deep within a hierarchy of layers instead'}
``` ```
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.
Read more about quantization in the [Quantization documentation](https://huggingface.co/docs/text-generation-inference/en/conceptual/quantization).
## Develop ## Known Issue
```shell -
make server-dev
make router-dev
```
## Testing ## 参考资料
- [README_ORIGIN](README_ORIGIN.md)
```shell - [https://github.com/huggingface/text-generation-inference](https://github.com/huggingface/text-generation-inference)
# python
make python-server-tests
make python-client-tests
# or both server and client tests
make python-tests
# rust cargo tests
make rust-tests
# integration tests
make integration-tests
```
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment