Commit 3cf6368c authored by OlivierDehaene's avatar OlivierDehaene
Browse files

feat(server): Support all AutoModelForCausalLM on a best effort basis

parent 09674e6d
import torch
import torch.distributed
from typing import List, Tuple, Optional
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from text_generation.models.types import Batch, GeneratedText
class Model:
def __init__(self, model_name: str):
if torch.cuda.is_available():
self.device = torch.device("cuda")
dtype = torch.float16
else:
self.device = torch.device("cpu")
dtype = torch.float32
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
self.model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=dtype, device_map="auto"
).eval()
self.num_heads = self.model.config.num_attention_heads
def forward(
self, input_ids, attention_mask, past_key_values: Optional = None
) -> CausalLMOutputWithPast:
# Model Forward
return self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=True,
)
def generate_token(
self, batch: Batch
) -> Tuple[List[GeneratedText], Optional[Batch]]:
# For some reason, inference_mode does not work well with GLOO which we use on CPU
context_manager = (
torch.no_grad if self.device.type == "cpu" else torch.inference_mode
)
with context_manager():
outputs = self.forward(**batch.input_ids)
# List of indices to cache
next_batch_keep_indices = []
next_batch_past_keep_indices = []
# New input_ids for next forward
next_batch_input_ids = []
next_batch_all_input_ids = []
next_all_input_lengths = []
next_batch_size = 0
next_batch_max_sequence_length = 0
# Finished requests
generated_texts: List[GeneratedText] = []
# Zipped iterator
iterator = zip(
batch.requests,
batch.all_input_lengths,
outputs.logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
)
# For each member of the batch
for i, (
request,
input_length,
logits,
next_token_chooser,
stopping_criteria,
all_tokens,
) in enumerate(iterator):
# Select next token
next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])
# Append next token to all tokens
all_tokens = torch.cat([all_tokens, next_token])
# Evaluate stopping criteria
if stopping_criteria(all_tokens):
# Decode all tokens
output = self.tokenizer.decode(
all_tokens.squeeze(-1), skip_special_tokens=True
)
# Add to the list of finished generations with the original request
generated_texts.append(GeneratedText(request, output))
# add to the next batch
else:
next_batch_keep_indices.append(i)
# past_key_values is of shape [batch_size * num_heads, ...]
# so we need to take into account the `num_heads` stride here
next_batch_past_keep_indices.extend(
[j for j in range(i * self.num_heads, (i + 1) * self.num_heads)]
)
next_batch_input_ids.append(next_token)
next_batch_all_input_ids.append(all_tokens)
next_batch_size += 1
new_input_length = input_length + 1
next_all_input_lengths.append(new_input_length)
next_batch_max_sequence_length = max(
next_batch_max_sequence_length, new_input_length
)
# We finished all generations in the batch; there is no next batch
if not next_batch_keep_indices:
return generated_texts, None
# If we finished at least one generation
next_batch_input_ids = {"input_ids": torch.cat(next_batch_input_ids, dim=0)}
if generated_texts:
# Apply indices to attention mask, past key values and other items that need to be cached
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
next_batch_keep_indices
]
next_batch_input_ids["past_key_values"] = [
(
keys[next_batch_past_keep_indices],
values[next_batch_past_keep_indices],
)
for keys, values in outputs["past_key_values"]
]
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
next_batch_next_token_choosers = [
batch.next_token_choosers[i] for i in next_batch_keep_indices
]
next_batch_stopping_criterias = [
batch.stopping_criterias[i] for i in next_batch_keep_indices
]
else:
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
next_batch_input_ids["past_key_values"] = outputs["past_key_values"]
next_batch_requests = batch.requests
next_batch_next_token_choosers = batch.next_token_choosers
next_batch_stopping_criterias = batch.stopping_criterias
# Update attention_mask with padding as we added a new token to input_ids
next_batch_input_ids["attention_mask"] = torch.cat(
[
next_batch_input_ids["attention_mask"],
torch.ones((next_batch_size, 1)).to(self.device),
],
dim=1,
)
next_batch = Batch(
batch_id=batch.batch_id,
requests=next_batch_requests,
all_input_lengths=next_all_input_lengths,
input_ids=next_batch_input_ids,
all_input_ids=next_batch_all_input_ids,
next_token_choosers=next_batch_next_token_choosers,
stopping_criterias=next_batch_stopping_criterias,
size=next_batch_size,
max_sequence_length=next_batch_max_sequence_length,
)
return generated_texts, next_batch
import torch
from dataclasses import dataclass
from typing import List, Dict
from transformers import AutoTokenizer
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria
@dataclass
class Batch:
batch_id: int
requests: List[generate_pb2.Request]
all_input_lengths: List[int]
input_ids: Dict[str, torch.Tensor]
all_input_ids: List[torch.Tensor]
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
size: int
max_sequence_length: int
def to_pb(self):
return generate_pb2.Batch(
id=self.batch_id,
requests=self.requests,
size=self.size,
max_sequence_length=self.max_sequence_length,
)
@classmethod
def from_pb(
cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
) -> "Batch":
inputs = []
next_token_choosers = []
stopping_criterias = []
all_input_lengths = []
# Parse batch
for r in pb.requests:
inputs.append(r.inputs)
all_input_lengths.append(r.input_length)
next_token_choosers.append(
NextTokenChooser(
temperature=r.parameters.temperature,
top_k=r.parameters.top_k,
top_p=r.parameters.top_p,
do_sample=r.parameters.do_sample,
)
)
stopping_criterias.append(StoppingCriteria(max_new_tokens=r.max_new_tokens))
input_ids = tokenizer(
inputs, return_tensors="pt", padding=True, pad_to_multiple_of=8
).to(device)
all_input_ids = input_ids["input_ids"].unsqueeze(-1)
return cls(
batch_id=pb.id,
requests=pb.requests,
all_input_lengths=all_input_lengths,
input_ids=input_ids,
all_input_ids=all_input_ids,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=pb.size,
max_sequence_length=pb.max_sequence_length,
)
@classmethod
def concatenate(cls, batches: List["Batch"]) -> "Batch":
# Used for padding
total_batch_size = sum(batch.size for batch in batches)
max_sequence_length = max(batch.max_sequence_length for batch in batches)
# Batch attributes
input_ids = {"input_ids": None, "attention_mask": None, "past_key_values": []}
requests = []
all_input_lengths = []
all_input_ids = []
next_token_choosers = []
stopping_criterias = []
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
all_input_lengths.extend(batch.all_input_lengths)
all_input_ids.extend(batch.all_input_ids)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
# Slicing end index for this batch
end_index = start_index + batch.size
# We only concatenate batches that did at least one step
if batch.input_ids["input_ids"].shape[1] > 1:
raise ValueError("Batch input_ids should be of shape (batch_size, 1)")
# Initialize tensors
if i == 0:
input_ids["input_ids"] = torch.empty(
(total_batch_size, 1),
dtype=batch.input_ids["input_ids"].dtype,
device=batch.input_ids["input_ids"].device,
)
input_ids["attention_mask"] = torch.zeros(
(total_batch_size, max_sequence_length),
dtype=batch.input_ids["attention_mask"].dtype,
device=batch.input_ids["attention_mask"].device,
)
# input_ids["input_ids"] is always of shape [batch_size, 1]
# We do not need to pad it
input_ids["input_ids"][start_index:end_index] = batch.input_ids["input_ids"]
# We need to slice the attention mask to remove padding from previous steps
input_ids["attention_mask"][
start_index:end_index, -batch.max_sequence_length :
] = batch.input_ids["attention_mask"][:, -batch.max_sequence_length :]
for j, past in enumerate(batch.input_ids["past_key_values"]):
past_keys = past[0]
past_values = past[1]
_, head_dim, padded_sequence_length = past_keys.shape
# Reshape the tensors to make slicing easier
past_keys = past_keys.view(
batch.size, -1, head_dim, padded_sequence_length
)
past_values = past_values.view(
batch.size, -1, padded_sequence_length, head_dim
)
num_heads = past_keys.shape[1]
# Initialize tensors
# This will run only once per layer
if j == len(input_ids["past_key_values"]):
padded_past_keys = torch.zeros(
(
total_batch_size,
num_heads,
head_dim,
max_sequence_length - 1,
),
dtype=past_keys.dtype,
device=past_keys.device,
)
padded_past_values = torch.zeros(
(
total_batch_size,
num_heads,
max_sequence_length - 1,
head_dim,
),
dtype=past_values.dtype,
device=past_values.device,
)
input_ids["past_key_values"].append(
[padded_past_keys, padded_past_values]
)
# We slice the past keys and values to remove the padding from previous batches
input_ids["past_key_values"][j][0][
start_index:end_index, :, :, -(batch.max_sequence_length - 1) :
] = past_keys[:, :, :, -(batch.max_sequence_length - 1) :]
input_ids["past_key_values"][j][1][
start_index:end_index, :, -(batch.max_sequence_length - 1) :, :
] = past_values[:, :, -(batch.max_sequence_length - 1) :, :]
# If we are on the last batch, we need to reshape the tensors
if (i + 1) == len(batches):
input_ids["past_key_values"][j][0] = input_ids["past_key_values"][
j
][0].view(total_batch_size * num_heads, head_dim, -1)
input_ids["past_key_values"][j][1] = input_ids["past_key_values"][
j
][1].view(total_batch_size * num_heads, -1, head_dim)
start_index += batch.size
return cls(
batch_id=batches[0].batch_id,
requests=requests,
all_input_lengths=all_input_lengths,
input_ids=input_ids,
all_input_ids=all_input_ids,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=total_batch_size,
max_sequence_length=max_sequence_length,
)
@dataclass
class GeneratedText:
request: generate_pb2.Request
output: str
def to_pb(self) -> generate_pb2.GeneratedText:
return generate_pb2.GeneratedText(request=self.request, output=self.output)
......@@ -5,15 +5,16 @@ from grpc import aio
from grpc_reflection.v1alpha import reflection
from pathlib import Path
from typing import Optional, List
from typing import List
from bloom_inference.cache import Cache
from bloom_inference.model import BLOOM, Batch, BLOOMSharded
from bloom_inference.pb import generate_pb2_grpc, generate_pb2
from text_generation.cache import Cache
from text_generation.models import Model, get_model
from text_generation.models.types import Batch
from text_generation.pb import generate_pb2_grpc, generate_pb2
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
def __init__(self, model: BLOOM, cache: Cache, server_urls: List[str]):
def __init__(self, model: Model, cache: Cache, server_urls: List[str]):
self.cache = cache
self.model = model
self.server_urls = server_urls
......@@ -78,21 +79,17 @@ def serve(
):
unix_socket_template = "unix://{}-{}"
if sharded:
model = BLOOMSharded(model_name, quantize)
server_urls = [
unix_socket_template.format(uds_path, rank)
for rank in range(model.world_size)
for rank in range(int(os.environ["WORLD_SIZE"]))
]
local_url = server_urls[model.rank]
local_url = server_urls[int(os.environ["RANK"])]
else:
if quantize:
raise ValueError(
"bitsandbytes quantization is only available when running in `sharded` mode."
)
model = BLOOM(model_name)
local_url = unix_socket_template.format(uds_path, 0)
server_urls = [local_url]
model = get_model(model_name, sharded, quantize)
server = aio.server()
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
TextGenerationService(model, Cache(), server_urls), server
......
......@@ -92,19 +92,17 @@ def initialize_torch_distributed():
return torch.distributed.distributed_c10d._get_default_group(), rank, world_size
def weight_hub_files(model_name):
def weight_hub_files(model_name, extension=".safetensors"):
"""Get the safetensors filenames on the hub"""
api = HfApi()
info = api.model_info(model_name)
filenames = [
s.rfilename for s in info.siblings if s.rfilename.endswith(".safetensors")
]
filenames = [s.rfilename for s in info.siblings if s.rfilename.endswith(extension)]
return filenames
def weight_files(model_name):
def weight_files(model_name, extension=".safetensors"):
"""Get the local safetensors filenames"""
filenames = weight_hub_files(model_name)
filenames = weight_hub_files(model_name, extension)
files = []
for filename in filenames:
cache_file = try_to_load_from_cache(model_name, filename=filename)
......@@ -112,16 +110,16 @@ def weight_files(model_name):
raise LocalEntryNotFoundError(
f"File {filename} of model {model_name} not found in "
f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
f"Please run `bloom-inference-server download-weights {model_name}` first."
f"Please run `text-generation-server download-weights {model_name}` first."
)
files.append(cache_file)
return files
def download_weights(model_name):
def download_weights(model_name, extension=".safetensors"):
"""Download the safetensors files from the hub"""
filenames = weight_hub_files(model_name)
filenames = weight_hub_files(model_name, extension)
download_function = partial(
hf_hub_download, repo_id=model_name, local_files_only=False
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment