Unverified Commit 20c3c594 authored by OlivierDehaene's avatar OlivierDehaene Committed by GitHub
Browse files

feat(router): refactor API and add openAPI schemas (#53)

parent b1482d90
/// Text Generation Inference Webserver
mod infer;
mod queue;
pub mod server;
......@@ -8,45 +7,55 @@ mod validation;
use infer::Infer;
use queue::{Entry, Queue};
use serde::{Deserialize, Serialize};
use utoipa::ToSchema;
use validation::Validation;
#[derive(Clone, Debug, Deserialize)]
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct GenerateParameters {
#[serde(default = "default_temperature")]
pub temperature: f32,
#[serde(default = "default_repetition_penalty")]
pub repetition_penalty: f32,
#[serde(default = "default_top_k")]
pub top_k: i32,
#[serde(default = "default_top_p")]
pub top_p: f32,
#[serde(default)]
#[schema(
exclusive_minimum = 0.0,
nullable = true,
default = "null",
example = 0.5
)]
pub temperature: Option<f32>,
#[serde(default)]
#[schema(
exclusive_minimum = 0.0,
nullable = true,
default = "null",
example = 1.03
)]
pub repetition_penalty: Option<f32>,
#[serde(default)]
#[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
pub top_k: Option<i32>,
#[serde(default)]
#[schema(
exclusive_minimum = 0.0,
maximum = 1.0,
nullable = true,
default = "null",
example = 0.95
)]
pub top_p: Option<f32>,
#[serde(default = "default_do_sample")]
#[schema(default = "false", example = true)]
pub do_sample: bool,
#[serde(default = "default_max_new_tokens")]
#[schema(exclusive_minimum = 0, exclusive_maximum = 512, default = "20")]
pub max_new_tokens: u32,
#[serde(default)]
#[schema(inline, max_items = 4, example = json!(["photographer"]))]
pub stop: Vec<String>,
#[serde(default)]
#[schema(default = "true")]
pub details: bool,
#[serde(default)]
pub seed: Option<u64>,
}
fn default_temperature() -> f32 {
1.0
}
fn default_repetition_penalty() -> f32 {
1.0
}
fn default_top_k() -> i32 {
0
}
fn default_top_p() -> f32 {
1.0
}
fn default_do_sample() -> bool {
false
}
......@@ -57,10 +66,10 @@ fn default_max_new_tokens() -> u32 {
fn default_parameters() -> GenerateParameters {
GenerateParameters {
temperature: default_temperature(),
repetition_penalty: default_repetition_penalty(),
top_k: default_top_k(),
top_p: default_top_p(),
temperature: None,
repetition_penalty: None,
top_k: None,
top_p: None,
do_sample: default_do_sample(),
max_new_tokens: default_max_new_tokens(),
stop: vec![],
......@@ -69,42 +78,77 @@ fn default_parameters() -> GenerateParameters {
}
}
#[derive(Clone, Debug, Deserialize)]
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct GenerateRequest {
#[schema(example = "My name is Olivier and I")]
pub inputs: String,
#[serde(default = "default_parameters")]
pub parameters: GenerateParameters,
}
#[derive(Debug, Serialize)]
pub struct Token(u32, String, f32);
#[derive(Debug, Serialize, ToSchema)]
pub struct Token {
#[schema(example = 0)]
id: u32,
#[schema(example = "test")]
text: String,
#[schema(nullable = true, example = -0.34)]
logprob: f32,
}
#[derive(Serialize, ToSchema)]
#[serde(rename_all(serialize = "snake_case"))]
pub(crate) enum FinishReason {
#[schema(rename = "length")]
Length,
#[serde(rename = "eos_token")]
#[schema(rename = "eos_token")]
EndOfSequenceToken,
#[schema(rename = "stop_sequence")]
StopSequence,
}
#[derive(Serialize)]
#[derive(Serialize, ToSchema)]
pub(crate) struct Details {
pub finish_reason: String,
#[schema(example = "length")]
pub finish_reason: FinishReason,
#[schema(example = 1)]
pub generated_tokens: u32,
#[schema(example = 42)]
pub seed: Option<u64>,
#[serde(skip_serializing_if = "Option::is_none")]
pub prefill: Option<Vec<Token>>,
#[serde(skip_serializing_if = "Option::is_none")]
pub tokens: Option<Vec<Token>>,
}
#[derive(Serialize)]
#[derive(Serialize, ToSchema)]
pub(crate) struct GenerateResponse {
#[schema(example = "test")]
pub generated_text: String,
#[serde(skip_serializing_if = "Option::is_none")]
pub details: Option<Details>,
}
#[derive(Serialize)]
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
#[schema(example = "length")]
pub finish_reason: FinishReason,
#[schema(example = 1)]
pub generated_tokens: u32,
#[schema(example = 42)]
pub seed: Option<u64>,
}
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamResponse {
pub token: Token,
#[schema(nullable = true, default = "null", example = "test")]
pub generated_text: Option<String>,
pub details: Option<Details>,
#[schema(nullable = true, default = "null")]
pub details: Option<StreamDetails>,
}
#[derive(Serialize)]
#[derive(Serialize, ToSchema)]
pub(crate) struct ErrorResponse {
#[schema(inline)]
pub error: String,
}
/// HTTP Server logic
use crate::infer::{InferError, InferStreamResponse};
use crate::{
Details, ErrorResponse, GenerateParameters, GenerateRequest, GenerateResponse, Infer,
StreamResponse, Validation,
Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest, GenerateResponse,
Infer, StreamDetails, StreamResponse, Token, Validation,
};
use axum::extract::Extension;
use axum::http::{HeaderMap, StatusCode};
......@@ -19,6 +19,8 @@ use tokio::signal;
use tokio::time::Instant;
use tokio_stream::StreamExt;
use tracing::instrument;
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
/// Health check method
#[instrument(skip(infer))]
......@@ -32,13 +34,13 @@ async fn health(infer: Extension<Infer>) -> Result<(), (StatusCode, Json<ErrorRe
.generate(GenerateRequest {
inputs: "liveness".to_string(),
parameters: GenerateParameters {
temperature: 1.0,
repetition_penalty: 1.0,
top_k: 0,
top_p: 1.0,
temperature: None,
repetition_penalty: None,
top_k: None,
top_p: None,
do_sample: false,
max_new_tokens: 1,
stop: vec![],
stop: Vec::new(),
details: false,
seed: None,
},
......@@ -47,7 +49,24 @@ async fn health(infer: Extension<Infer>) -> Result<(), (StatusCode, Json<ErrorRe
Ok(())
}
/// Generate method
/// Generate tokens
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = [GenerateResponse]),
(status = 424, description = "Generation Error", body = [ErrorResponse],
example = json!({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = [ErrorResponse],
example = json!({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = [ErrorResponse],
example = json!({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = [ErrorResponse],
example = json!({"error": "Incomplete generation"})),
)
)]
#[instrument(
skip(infer),
fields(
......@@ -76,7 +95,7 @@ async fn generate(
// Token details
let details = match details {
true => Some(Details {
finish_reason: response.generated_text.finish_reason,
finish_reason: FinishReason::from(response.generated_text.finish_reason),
generated_tokens: response.generated_text.generated_tokens,
prefill: Some(response.prefill),
tokens: Some(response.tokens),
......@@ -132,7 +151,29 @@ async fn generate(
Ok((headers, Json(response)))
}
/// Generate stream method
/// Generate a stream of token using Server Side Events
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = [StreamResponse],
content_type="text/event-stream "),
(status = 424, description = "Generation Error", body = [ErrorResponse],
example = json!({"error": "Request failed during generation"}),
content_type="text/event-stream "),
(status = 429, description = "Model is overloaded", body = [ErrorResponse],
example = json!({"error": "Model is overloaded"}),
content_type="text/event-stream "),
(status = 422, description = "Input validation error", body = [ErrorResponse],
example = json!({"error": "Input validation error"}),
content_type="text/event-stream "),
(status = 500, description = "Incomplete generation", body = [ErrorResponse],
example = json!({"error": "Incomplete generation"}),
content_type="text/event-stream "),
)
)]
#[instrument(
skip(infer),
fields(
......@@ -185,11 +226,9 @@ async fn generate_stream(
} => {
// Token details
let details = match details {
true => Some(Details {
finish_reason: generated_text.finish_reason,
true => Some(StreamDetails {
finish_reason: FinishReason::from(generated_text.finish_reason),
generated_tokens: generated_text.generated_tokens,
prefill: None,
tokens: None,
seed: generated_text.seed,
}),
false => None,
......@@ -265,6 +304,39 @@ pub async fn run(
validation_workers: usize,
addr: SocketAddr,
) {
// OpenAPI documentation
#[derive(OpenApi)]
#[openapi(
paths(
generate,
generate_stream,
),
components(
schemas(
GenerateRequest,
GenerateParameters,
Token,
GenerateResponse,
Details,
FinishReason,
StreamResponse,
StreamDetails,
ErrorResponse,
)
),
tags(
(name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
),
info(
title = "Text Generation Inference",
license(
name = "Apache 2.0",
url = "https://www.apache.org/licenses/LICENSE-2.0"
)
)
)]
struct ApiDoc;
// Create state
let validation = Validation::new(validation_workers, tokenizer, max_input_length);
let infer = Infer::new(
......@@ -277,6 +349,7 @@ pub async fn run(
// Create router
let app = Router::new()
.merge(SwaggerUi::new("/docs").url("/api-doc/openapi.json", ApiDoc::openapi()))
.route("/", post(generate))
.route("/generate", post(generate))
.route("/generate_stream", post(generate_stream))
......@@ -320,6 +393,17 @@ async fn shutdown_signal() {
tracing::info!("signal received, starting graceful shutdown");
}
impl From<i32> for FinishReason {
fn from(finish_reason: i32) -> Self {
let finish_reason = text_generation_client::FinishReason::from_i32(finish_reason).unwrap();
match finish_reason {
text_generation_client::FinishReason::Length => FinishReason::Length,
text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
}
}
}
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
fn from(err: InferError) -> Self {
......
......@@ -110,30 +110,58 @@ fn validate(
max_input_length: usize,
rng: &mut ThreadRng,
) -> Result<ValidGenerateRequest, ValidationError> {
if request.parameters.temperature <= 0.0 {
let GenerateParameters {
temperature,
repetition_penalty,
top_k,
top_p,
do_sample,
max_new_tokens,
stop: stop_sequences,
seed,
..
} = request.parameters;
let temperature = temperature.unwrap_or(1.0);
if temperature <= 0.0 {
return Err(ValidationError::Temperature);
}
if request.parameters.repetition_penalty <= 0.0 {
let repetition_penalty = repetition_penalty.unwrap_or(1.0);
if repetition_penalty <= 0.0 {
return Err(ValidationError::RepetitionPenalty);
}
if request.parameters.top_p <= 0.0 || request.parameters.top_p > 1.0 {
let top_p = top_p.unwrap_or(1.0);
if top_p <= 0.0 || top_p > 1.0 {
return Err(ValidationError::TopP);
}
if request.parameters.top_k < 0 {
return Err(ValidationError::TopK);
}
if request.parameters.max_new_tokens > MAX_MAX_NEW_TOKENS {
// Different because the proto default value is 0 while it is not a valid value
// for the user
let top_k: u32 = match top_k {
None => Ok(0),
Some(top_k) => {
if top_k <= 0 {
return Err(ValidationError::TopK);
}
Ok(top_k as u32)
}
}?;
if max_new_tokens == 0 || max_new_tokens > MAX_MAX_NEW_TOKENS {
return Err(ValidationError::MaxNewTokens(MAX_MAX_NEW_TOKENS));
}
if request.parameters.stop.len() > MAX_STOP_SEQUENCES {
if stop_sequences.len() > MAX_STOP_SEQUENCES {
return Err(ValidationError::StopSequence(
MAX_STOP_SEQUENCES,
request.parameters.stop.len(),
stop_sequences.len(),
));
}
// If seed is None, assign a random one
let seed = match request.parameters.seed {
let seed = match seed {
None => rng.gen(),
Some(seed) => seed,
};
......@@ -147,21 +175,10 @@ fn validate(
Err(ValidationError::InputLength(input_length, max_input_length))
} else {
// Return ValidGenerateRequest
let GenerateParameters {
temperature,
repetition_penalty,
top_k,
top_p,
do_sample,
max_new_tokens,
stop: stop_sequences,
..
} = request.parameters;
let parameters = NextTokenChooserParameters {
temperature,
repetition_penalty,
top_k: top_k as u32,
top_k,
top_p,
do_sample,
seed,
......@@ -206,7 +223,7 @@ pub enum ValidationError {
TopP,
#[error("top_k must be strictly positive")]
TopK,
#[error("max_new_tokens must be <= {0}")]
#[error("max_new_tokens must be strictly positive and <= {0}")]
MaxNewTokens(u32),
#[error("inputs must have less than {1} tokens. Given: {0}")]
InputLength(usize, usize),
......
# BLOOM Inference Python gRPC Server
# Text Generation Inference Python gRPC Server
A Python gRPC server for BLOOM Inference
A Python gRPC server for Text Generation Inference
## Install
......
[tool.poetry]
name = "text-generation"
version = "0.1.0"
description = "BLOOM Inference Python gRPC Server"
version = "0.2.0"
description = "Text Generation Inference Python gRPC Server"
authors = ["Olivier Dehaene <olivier@huggingface.co>"]
[tool.poetry.scripts]
......
......@@ -140,8 +140,7 @@ def test_causal_lm_generate_token_completion(default_bloom, default_bloom_batch)
assert len(generations) == 1
assert (
generations[0].generated_text.text
== "TestTestTestTestTestTestTestTestTestTest"
generations[0].generated_text.text == "TestTestTestTestTestTestTestTestTestTest"
)
assert generations[0].request_id == default_bloom_batch.requests[0].id
assert (
......@@ -187,8 +186,7 @@ def test_causal_lm_generate_token_completion_multi(
assert len(generations) == 1
assert (
generations[0].generated_text.text
== "TestTestTestTestTestTestTestTestTestTest"
generations[0].generated_text.text == "TestTestTestTestTestTestTestTestTestTest"
)
assert (
generations[0].request_id == default_multi_requests_bloom_batch.requests[0].id
......@@ -283,8 +281,7 @@ def test_batch_concatenate(
assert len(generations) == 2
assert (
generations[0].generated_text.text
== "TestTestTestTestTestTestTestTestTestTest"
generations[0].generated_text.text == "TestTestTestTestTestTestTestTestTestTest"
)
assert generations[0].request_id == default_bloom_batch.requests[0].id
assert (
......@@ -306,8 +303,7 @@ def test_batch_concatenate(
assert len(generations) == 1
assert (
generations[0].generated_text.text
== "TestTestTestTestTestTestTestTestTestTest"
generations[0].generated_text.text == "TestTestTestTestTestTestTestTestTestTest"
)
assert (
generations[0].request_id == default_multi_requests_bloom_batch.requests[0].id
......
......@@ -9,6 +9,7 @@ from text_generation.utils import (
StopSequenceCriteria,
StoppingCriteria,
LocalEntryNotFoundError,
FinishReason,
)
......@@ -24,13 +25,13 @@ def test_stop_sequence_criteria():
def test_stopping_criteria():
criteria = StoppingCriteria(0, [StopSequenceCriteria("/test;")], max_new_tokens=5)
assert criteria(65827, "/test") == (False, None)
assert criteria(30, ";") == (True, "stop_sequence")
assert criteria(30, ";") == (True, FinishReason.FINISH_REASON_STOP_SEQUENCE)
def test_stopping_criteria_eos():
criteria = StoppingCriteria(0, [StopSequenceCriteria("/test;")], max_new_tokens=5)
assert criteria(1, "") == (False, None)
assert criteria(0, "") == (True, "eos_token")
assert criteria(0, "") == (True, FinishReason.FINISH_REASON_EOS_TOKEN)
def test_stopping_criteria_max():
......@@ -39,7 +40,7 @@ def test_stopping_criteria_max():
assert criteria(1, "") == (False, None)
assert criteria(1, "") == (False, None)
assert criteria(1, "") == (False, None)
assert criteria(1, "") == (True, "length")
assert criteria(1, "") == (True, FinishReason.FINISH_REASON_LENGTH)
def test_weight_hub_files():
......
......@@ -13,7 +13,7 @@ app = typer.Typer()
@app.command()
def serve(
model_name: str,
model_id: str,
revision: Optional[str] = None,
sharded: bool = False,
quantize: bool = False,
......@@ -46,16 +46,16 @@ def serve(
os.getenv("MASTER_PORT", None) is not None
), "MASTER_PORT must be set when sharded is True"
server.serve(model_name, revision, sharded, quantize, uds_path)
server.serve(model_id, revision, sharded, quantize, uds_path)
@app.command()
def download_weights(
model_name: str,
model_id: str,
revision: Optional[str] = None,
extension: str = ".safetensors",
):
utils.download_weights(model_name, revision, extension)
utils.download_weights(model_id, revision, extension)
if __name__ == "__main__":
......
......@@ -30,31 +30,31 @@ torch.backends.cudnn.allow_tf32 = True
def get_model(
model_name: str, revision: Optional[str], sharded: bool, quantize: bool
model_id: str, revision: Optional[str], sharded: bool, quantize: bool
) -> Model:
config = AutoConfig.from_pretrained(model_name, revision=revision)
config = AutoConfig.from_pretrained(model_id, revision=revision)
if config.model_type == "bloom":
if sharded:
return BLOOMSharded(model_name, revision, quantize=quantize)
return BLOOMSharded(model_id, revision, quantize=quantize)
else:
return BLOOM(model_name, revision, quantize=quantize)
return BLOOM(model_id, revision, quantize=quantize)
elif config.model_type == "gpt_neox":
if sharded:
return GPTNeoxSharded(model_name, revision, quantize=quantize)
return GPTNeoxSharded(model_id, revision, quantize=quantize)
else:
return GPTNeox(model_name, revision, quantize=quantize)
elif model_name.startswith("facebook/galactica"):
return GPTNeox(model_id, revision, quantize=quantize)
elif model_id.startswith("facebook/galactica"):
if sharded:
return GalacticaSharded(model_name, revision, quantize=quantize)
return GalacticaSharded(model_id, revision, quantize=quantize)
else:
return Galactica(model_name, revision, quantize=quantize)
elif "santacoder" in model_name:
return SantaCoder(model_name, revision, quantize)
return Galactica(model_id, revision, quantize=quantize)
elif "santacoder" in model_id:
return SantaCoder(model_id, revision, quantize)
else:
if sharded:
raise ValueError("sharded is not supported for AutoModel")
try:
return CausalLM(model_name, revision, quantize=quantize)
return CausalLM(model_id, revision, quantize=quantize)
except Exception:
return Seq2SeqLM(model_name, revision, quantize=quantize)
return Seq2SeqLM(model_id, revision, quantize=quantize)
......@@ -57,10 +57,10 @@ class BLOOM(CausalLM):
class BLOOMSharded(BLOOM):
def __init__(
self, model_name: str, revision: Optional[str] = None, quantize: bool = False
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
):
if not model_name.startswith("bigscience/bloom"):
raise ValueError(f"Model {model_name} is not supported")
if not model_id.startswith("bigscience/bloom"):
raise ValueError(f"Model {model_id} is not supported")
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
self.master = self.rank == 0
......@@ -72,22 +72,20 @@ class BLOOMSharded(BLOOM):
dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained(
model_name, revision=revision, padding_side="left"
model_id, revision=revision, padding_side="left"
)
config = AutoConfig.from_pretrained(
model_name, revision=revision, slow_but_exact=False, tp_parallel=True
model_id, revision=revision, slow_but_exact=False, tp_parallel=True
)
config.pad_token_id = 3
# Only download weights for small models
if self.master and model_name == "bigscience/bloom-560m":
download_weights(model_name, revision=revision, extension=".safetensors")
if self.master and model_id == "bigscience/bloom-560m":
download_weights(model_id, revision=revision, extension=".safetensors")
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(
model_name, revision=revision, extension=".safetensors"
)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
if not filenames:
raise ValueError("No safetensors weights found")
......
......@@ -232,7 +232,7 @@ class CausalLMBatch(Batch):
class CausalLM(Model):
def __init__(self, model_name: str, revision: Optional[str] = None, quantize=False):
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
......@@ -244,10 +244,10 @@ class CausalLM(Model):
dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained(
model_name, revision=revision, padding_side="left"
model_id, revision=revision, padding_side="left"
)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
model_id,
revision=revision,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None,
......
......@@ -149,10 +149,10 @@ class Galactica(CausalLM):
class GalacticaSharded(Galactica):
def __init__(
self, model_name: str, revision: Optional[str] = None, quantize: bool = False
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
):
if not model_name.startswith("facebook/galactica"):
raise ValueError(f"Model {model_name} is not supported")
if not model_id.startswith("facebook/galactica"):
raise ValueError(f"Model {model_id} is not supported")
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
self.master = self.rank == 0
......@@ -164,22 +164,20 @@ class GalacticaSharded(Galactica):
dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained(
model_name, revision=revision, padding_side="left"
model_id, revision=revision, padding_side="left"
)
config = AutoConfig.from_pretrained(
model_name, revision=revision, tp_parallel=True
model_id, revision=revision, tp_parallel=True
)
tokenizer.pad_token_id = config.pad_token_id
# Only download weights for small models
if self.master and model_name == "facebook/galactica-125m":
download_weights(model_name, revision=revision, extension=".safetensors")
if self.master and model_id == "facebook/galactica-125m":
download_weights(model_id, revision=revision, extension=".safetensors")
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(
model_name, revision=revision, extension=".safetensors"
)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
if not filenames:
raise ValueError("No safetensors weights found")
......
......@@ -49,7 +49,7 @@ class GPTNeox(CausalLM):
class GPTNeoxSharded(GPTNeox):
def __init__(
self, model_name: str, revision: Optional[str] = None, quantize: bool = False
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
):
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
self.master = self.rank == 0
......@@ -61,22 +61,20 @@ class GPTNeoxSharded(GPTNeox):
dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained(
model_name, revision=revision, padding_side="left"
model_id, revision=revision, padding_side="left"
)
tokenizer.pad_token = tokenizer.eos_token
config = AutoConfig.from_pretrained(
model_name, revision=revision, tp_parallel=True
model_id, revision=revision, tp_parallel=True
)
# Only master download weights
if self.master:
download_weights(model_name, revision=revision, extension=".safetensors")
download_weights(model_id, revision=revision, extension=".safetensors")
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(
model_name, revision=revision, extension=".safetensors"
)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
if not filenames:
raise ValueError("No safetensors weights found")
......
......@@ -14,7 +14,7 @@ EOD = "<|endoftext|>"
class SantaCoder(CausalLM):
def __init__(self, model_name: str, revision: Optional[str] = None, quantize=False):
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
......@@ -26,7 +26,7 @@ class SantaCoder(CausalLM):
dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained(
model_name, revision=revision, padding_side="left"
model_id, revision=revision, padding_side="left"
)
tokenizer.add_special_tokens(
{
......@@ -43,7 +43,7 @@ class SantaCoder(CausalLM):
self.model = (
AutoModelForCausalLM.from_pretrained(
model_name,
model_id,
revision=revision,
torch_dtype=dtype,
load_in_8bit=quantize,
......
......@@ -289,7 +289,7 @@ class Seq2SeqLMBatch(Batch):
class Seq2SeqLM(Model):
def __init__(self, model_name: str, revision: Optional[str] = None, quantize=False):
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
......@@ -301,14 +301,14 @@ class Seq2SeqLM(Model):
dtype = torch.float32
self.model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
model_id,
revision=revision,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None,
load_in_8bit=quantize,
).eval()
tokenizer = AutoTokenizer.from_pretrained(
model_name, revision=revision, padding_side="left"
model_id, revision=revision, padding_side="left"
)
tokenizer.bos_token_id = self.model.config.decoder_start_token_id
......
......@@ -7,6 +7,7 @@ from typing import List, Optional
from transformers import PreTrainedTokenizerBase
from text_generation.pb import generate_pb2
from text_generation.pb.generate_pb2 import FinishReason
class Batch(ABC):
......@@ -38,7 +39,7 @@ class Batch(ABC):
class GeneratedText:
text: str
generated_tokens: int
finish_reason: str
finish_reason: FinishReason
seed: Optional[int]
def to_pb(self) -> generate_pb2.GeneratedText:
......
......@@ -66,14 +66,14 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
def serve(
model_name: str,
model_id: str,
revision: Optional[str],
sharded: bool,
quantize: bool,
uds_path: Path,
):
async def serve_inner(
model_name: str,
model_id: str,
revision: Optional[str],
sharded: bool = False,
quantize: bool = False,
......@@ -89,7 +89,7 @@ def serve(
local_url = unix_socket_template.format(uds_path, 0)
server_urls = [local_url]
model = get_model(model_name, revision, sharded, quantize)
model = get_model(model_id, revision, sharded, quantize)
server = aio.server(interceptors=[ExceptionInterceptor()])
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
......@@ -109,4 +109,4 @@ def serve(
logger.info("Signal received. Shutting down")
await server.stop(0)
asyncio.run(serve_inner(model_name, revision, sharded, quantize))
asyncio.run(serve_inner(model_id, revision, sharded, quantize))
......@@ -24,9 +24,11 @@ from transformers.generation.logits_process import (
)
from text_generation.pb import generate_pb2
from text_generation.pb.generate_pb2 import FinishReason
WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None)
class Sampling:
def __init__(self, seed: int, device: str = "cpu"):
self.generator = torch.Generator(device)
......@@ -129,15 +131,15 @@ class StoppingCriteria:
def __call__(self, last_token: int, last_output: str) -> Tuple[bool, Optional[str]]:
self.current_tokens += 1
if self.current_tokens >= self.max_new_tokens:
return True, "length"
return True, FinishReason.FINISH_REASON_LENGTH
if last_token == self.eos_token_id:
return True, "eos_token"
return True, FinishReason.FINISH_REASON_EOS_TOKEN
self.current_output += last_output
for stop_sequence_criteria in self.stop_sequence_criterias:
if stop_sequence_criteria(self.current_output):
return True, "stop_sequence"
return True, FinishReason.FINISH_REASON_STOP_SEQUENCE
return False, None
......@@ -180,20 +182,20 @@ def initialize_torch_distributed():
return torch.distributed.distributed_c10d._get_default_group(), rank, world_size
def weight_hub_files(model_name, revision=None, extension=".safetensors"):
def weight_hub_files(model_id, revision=None, extension=".safetensors"):
"""Get the safetensors filenames on the hub"""
api = HfApi()
info = api.model_info(model_name, revision=revision)
info = api.model_info(model_id, revision=revision)
filenames = [s.rfilename for s in info.siblings if s.rfilename.endswith(extension)]
return filenames
def try_to_load_from_cache(model_name, revision, filename):
def try_to_load_from_cache(model_id, revision, filename):
"""Try to load a file from the Hugging Face cache"""
if revision is None:
revision = "main"
object_id = model_name.replace("/", "--")
object_id = model_id.replace("/", "--")
repo_cache = Path(HUGGINGFACE_HUB_CACHE) / f"models--{object_id}"
if not repo_cache.is_dir():
......@@ -228,38 +230,38 @@ def try_to_load_from_cache(model_name, revision, filename):
return str(cached_file) if cached_file.is_file() else None
def weight_files(model_name, revision=None, extension=".safetensors"):
def weight_files(model_id, revision=None, extension=".safetensors"):
"""Get the local safetensors filenames"""
if WEIGHTS_CACHE_OVERRIDE is not None:
return list(Path(WEIGHTS_CACHE_OVERRIDE).glob(f"*{extension}"))
filenames = weight_hub_files(model_name, revision, extension)
filenames = weight_hub_files(model_id, revision, extension)
files = []
for filename in filenames:
cache_file = try_to_load_from_cache(
model_name, revision=revision, filename=filename
model_id, revision=revision, filename=filename
)
if cache_file is None:
raise LocalEntryNotFoundError(
f"File {filename} of model {model_name} not found in "
f"File {filename} of model {model_id} not found in "
f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
f"Please run `text-generation-server download-weights {model_name}` first."
f"Please run `text-generation-server download-weights {model_id}` first."
)
files.append(cache_file)
return files
def download_weights(model_name, revision=None, extension=".safetensors"):
def download_weights(model_id, revision=None, extension=".safetensors"):
"""Download the safetensors files from the hub"""
if WEIGHTS_CACHE_OVERRIDE is not None:
return list(Path(WEIGHTS_CACHE_OVERRIDE).glob(f"*{extension}"))
filenames = weight_hub_files(model_name, revision, extension)
filenames = weight_hub_files(model_id, revision, extension)
download_function = partial(
hf_hub_download,
repo_id=model_name,
repo_id=model_id,
local_files_only=False,
)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment