medusa.py 6.07 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
from torch import nn
from typing import Tuple, Optional
from text_generation_server.utils.speculate import get_speculate
from text_generation_server.layers.linear import FastLinear
from text_generation_server.layers.tensor_parallel import (
    TensorParallelHead,
    TensorParallelColumnLinear,
)


class ResBlock(torch.nn.Module):
    def __init__(self, config, prefix, weights):
        super().__init__()
        self.linear = FastLinear.load(
            config, prefix=f"{prefix}.linear", weights=weights, bias=True
        )
        self.act = torch.nn.SiLU()

    def forward(self, x):
        return x + self.act(self.linear(x))


class MedusaModel(torch.nn.Module):
    def __init__(self, config, medusa_config, weights):
        super().__init__()
        self.heads = torch.nn.ModuleList(
            [
                MedusaHead(config, medusa_config, prefix=f"{i}", weights=weights)
                for i in range(get_speculate())
            ]
        )

    def forward(self, x):
        speculative_logits = torch.stack([head(x) for head in self.heads], dim=1)
        return speculative_logits


class MedusaHead(torch.nn.Module):
    def __init__(self, config, medusa_config, prefix, weights):
        super().__init__()
        self.blocks = torch.nn.ModuleList(
            [
                ResBlock(config, prefix=f"{prefix}.{i}", weights=weights)
                for i in range(medusa_config["medusa_num_layers"])
            ]
        )
        n = len(self.blocks)
        self.out = FastLinear.load(
            config, prefix=f"{prefix}.{n}", weights=weights, bias=False
        )

    def forward(self, x):
        for block in self.blocks:
            x = block(x)
        x = self.out(x)
        return x


class MedusaHeadV1(nn.Module):
    def __init__(self, lm_head, medusa):
        super().__init__()
        self.lm_head = lm_head
        self.medusa = medusa

    @staticmethod
    def load(config, prefix: str, weights):
        from pathlib import Path
        from safetensors import safe_open
        import json

        use_medusa = config.use_medusa

        medusa_config = str(Path(use_medusa) / "config.json")
        filename = str(Path(use_medusa) / "medusa_lm_head.safetensors")

        with open(medusa_config, "r") as f:
            medusa_config = json.load(f)
        routing = weights.routing
        with safe_open(filename, framework="pytorch") as f:
            for k in f.keys():
                if k in routing and routing[k] != filename:
                    raise RuntimeError(
                        f"Key {k} was found in multiple files: {filename} and {routing[k]}"
                    )
                routing[k] = filename

        medusa = MedusaModel(config, medusa_config, weights)
        lm_head = TensorParallelHead.load(config, prefix, weights)
        return MedusaHeadV1(lm_head, medusa)

    def forward(
        self, input: torch.Tensor
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        logits = self.lm_head(input)
        # If we have too many tokens, we skip speculative logits
        if input.shape[0] > 128:
            return logits, None

        speculative_logits = self.medusa(input)
        return logits, speculative_logits


class MedusaHeadV2(nn.Module):
    def __init__(self, config, prefix, weights):
        super().__init__()
        from pathlib import Path
        from safetensors import safe_open
        import json

        use_medusa = config.use_medusa

        medusa_config = str(Path(use_medusa) / "config.json")
        filename = str(Path(use_medusa) / "medusa_lm_head.safetensors")

        with open(medusa_config, "r") as f:
            medusa_config = json.load(f)
        routing = weights.routing
        with safe_open(filename, framework="pytorch") as f:
            for k in f.keys():
                if k in routing and routing[k] != filename:
                    raise RuntimeError(
                        f"Key {k} was found in multiple files: {filename} and {routing[k]}"
                    )
                routing[k] = filename

        self.n_medusa_heads = get_speculate()

        assert medusa_config["medusa_num_layers"] == 1
        self.linear = TensorParallelColumnLinear.load_multi(
            config,
            prefixes=[f"{i}.0.linear" for i in range(self.n_medusa_heads)],
            dim=0,
            weights=weights,
            bias=True,
        )
        self.process_group = weights.process_group
        self.world_size = self.process_group.size()
        self.rank = self.process_group.rank()

        self.act = torch.nn.SiLU()

        self.lm_head = TensorParallelHead.load(config, prefix, weights)

    def forward(self, x):
        # If we have too many tokens, we skip speculative logits
        if x.shape[0] > 128:
            logits = self.lm_head(x)
            return logits, None

        size = x.shape[-1]
        block_size = (size + self.world_size - 1) // self.world_size
        start = self.rank * block_size
        stop = (self.rank + 1) * block_size

        x_block = x[:, start:stop]

        # Compute all medusa heads at the same time, then reshape and move the n_medusa_heads dim to dim 1
        medusa_res = self.act(self.linear(x)).reshape(
            *x_block.shape[:-1], self.n_medusa_heads, x_block.shape[-1]
        )

        # Apply all residual medusa heads
        output = x[:, start:stop].unsqueeze(-2) + medusa_res

        # Gather medusa heads
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)

        # Stack x and medusa residual x
        stacked_x = torch.cat([x.unsqueeze(-2), world_output], dim=-2)

        # Compute lm head on x + medusa residual x
        logits = self.lm_head(stacked_x)

        # Finally, split logits from speculative logits
        logits, speculative_logits = torch.split(
            logits, [1, self.n_medusa_heads], dim=-2
        )
        # Squeeze added dimension
        logits = logits.squeeze(-2)

        return logits, speculative_logits