guidance.md 14.6 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
# Guidance

3
Text Generation Inference (TGI) now supports [JSON and regex grammars](#grammar-and-constraints) and [tools and functions](#tools-and-functions) to help developers guide LLM responses to fit their needs.
Nicolas Patry's avatar
Nicolas Patry committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

These feature are available starting from version `1.4.3`. They are accessible via the [text_generation](https://pypi.org/project/text-generation/) library and is compatible with OpenAI's client libraries. The following guide will walk you through the new features and how to use them!

## Quick Start

Before we jump into the deep end, ensure your system is using TGI version `1.4.3` or later to access all the features we're about to explore in this guide.

If you're not up to date, grab the latest version and let's get started!

## Table of Contents 📚

### Grammar and Constraints

- [The Grammar Parameter](#the-grammar-parameter): Shape your AI's responses with precision.
- [Constrain with Pydantic](#constrain-with-pydantic): Define a grammar using Pydantic models.
19
- [JSON Schema Integration](#json-schema-integration): Fine-grained control over your requests via JSON schema.
Nicolas Patry's avatar
Nicolas Patry committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
- [Using the client](#using-the-client): Use TGI's client libraries to shape the AI's responses.

### Tools and Functions

- [The Tools Parameter](#the-tools-parameter): Enhance the AI's capabilities with predefined functions.
- [Via the client](#text-generation-inference-client): Use TGI's client libraries to interact with the Messages API and Tool functions.
- [OpenAI integration](#openai-integration): Use OpenAI's client libraries to interact with TGI's Messages API and Tool functions.

## Grammar and Constraints 🛣️

### The Grammar Parameter

In TGI `1.4.3`, we've introduced the grammar parameter, which allows you to specify the format of the response you want from the AI. This is a game-changer for those who need precise control over the AI's output.

Using curl, you can make a request to TGI's Messages API with the grammar parameter. This is the most primitive way to interact with the API and using [Pydantic](#constrain-with-pydantic) is recommended for ease of use and readability.

```json
curl localhost:3000/generate \
    -X POST \
    -H 'Content-Type: application/json' \
    -d '{
    "inputs": "I saw a puppy a cat and a raccoon during my bike ride in the park",
    "parameters": {
        "repetition_penalty": 1.3,
        "grammar": {
            "type": "json",
            "value": {
                "properties": {
                    "location": {
                        "type": "string"
                    },
                    "activity": {
                        "type": "string"
                    },
                    "animals_seen": {
                        "type": "integer",
                        "minimum": 1,
                        "maximum": 5
                    },
                    "animals": {
                        "type": "array",
                        "items": {
                            "type": "string"
                        }
                    }
                },
                "required": ["location", "activity", "animals_seen", "animals"]
            }
        }
    }
}'
// {"generated_text":"{ \n\n\"activity\": \"biking\",\n\"animals\": [\"puppy\",\"cat\",\"raccoon\"],\n\"animals_seen\": 3,\n\"location\": \"park\"\n}"}

```

75
A grammar can be defined using Pydantic models, JSON schemas, or regular expressions. The AI will then generate a response that conforms to the specified grammar.
Nicolas Patry's avatar
Nicolas Patry committed
76

77
> Note: A grammar must compile to an intermediate representation to constrain the output. Grammar compilation is a computationally expensive and may take a few seconds to complete on the first request. Subsequent requests will use the cached grammar and will be much faster.
Nicolas Patry's avatar
Nicolas Patry committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

### Constrain with Pydantic

Pydantic is a powerful library for data validation and settings management. It's the perfect tool for crafting the a specific response format.

Using Pydantic models we can define a similar grammar as the previous example in a shorter and more readable way.

```python
import requests
from pydantic import BaseModel, conint
from typing import List

class Animals(BaseModel):
    location: str
    activity: str
    animals_seen: conint(ge=1, le=5)  # Constrained integer type
    animals: List[str]

prompt = "convert to JSON: I saw a puppy a cat and a raccoon during my bike ride in the park"

data = {
    "inputs": prompt,
    "parameters": {
        "repetition_penalty": 1.3,
        "grammar": {
            "type": "json",
            "value": Animals.schema()
        }
    }
}

headers = {
    "Content-Type": "application/json",
}

response = requests.post(
    'http://127.0.0.1:3000/generate',
    headers=headers,
    json=data
)
print(response.json())
# {'generated_text': '{ "activity": "bike riding", "animals": ["puppy","cat","raccoon"],"animals_seen": 3, "location":"park" }'}

```

### JSON Schema Integration

If Pydantic's not your style, go raw with direct JSON Schema integration. It's like having a conversation with the AI in its own language. This is simliar to the first example but with programmatic control.

```python
import requests

json_schema = {
    "properties": {
        "location": {
            "type": "string"
        },
        "activity": {
            "type": "string"
        },
        "animals_seen": {
            "type": "integer",
            "minimum": 1,
            "maximum": 5
        },
        "animals": {
            "type": "array",
            "items": {
                "type": "string"
            }
        }
    },
    "required": ["location", "activity", "animals_seen", "animals"]
}

data = {
154
    "inputs": "convert to JSON: I saw a puppy a cat and a raccoon during my bike ride in the park",
Nicolas Patry's avatar
Nicolas Patry committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    "parameters": {
        "max_new_tokens": 200,
        "repetition_penalty": 1.3,
        "grammar": {
            "type": "json",
            "value": json_schema
        }
    }
}

headers = {
    "Content-Type": "application/json",
}

response = requests.post(
    'http://127.0.0.1:3000/generate',
    headers=headers,
    json=data
)
print(response.json())
# {'generated_text': '{\n"activity": "biking",\n"animals": ["puppy","cat","raccoon"]\n  , "animals_seen": 3,\n   "location":"park"}'}

```

### Using the client

TGI provides a client library to that make it easy to send requests with all of the parameters we've discussed above. Here's an example of how to use the client to send a request with a grammar parameter.

```python
from text_generation import AsyncClient
from text_generation.types import GrammarType

# NOTE: tools defined above and removed for brevity

# Define an async function to encapsulate the async operation
async def main():
    client = AsyncClient(base_url="http://localhost:3000")

    # Use 'await' to wait for the async method 'chat' to complete
    response = await client.generate(
        "Whats Googles DNS",
        max_new_tokens=10,
        decoder_input_details=True,
        seed=1,
        grammar={
            "type": GrammarType.Regex,
            "value": "((25[0-5]|2[0-4]\\d|[01]?\\d\\d?)\\.){3}(25[0-5]|2[0-4]\\d|[01]?\\d\\d?)",
        },
    )

    # Once the response is received, you can process it
    print(response.generated_text)

# Ensure the main async function is run in the event loop
if __name__ == "__main__":
    import asyncio
    asyncio.run(main())

# 118.8.0.84

```

## Tools and Functions 🛠️

### The Tools Parameter

In addition to the grammar parameter, we've also introduced a set of tools and functions to help you get the most out of the Messages API.

Tools are a set of user defined functions that can be used in tandem with the chat functionality to enhance the AI's capabilities. You can use these tools to perform a variety of tasks, such as data manipulation, formatting, and more.

Functions, similar to grammar are defined as JSON schema and can be passed as part of the parameters to the Messages API.

```json
curl localhost:3000/v1/chat/completions \
    -X POST \
    -H 'Content-Type: application/json' \
    -d '{
    "model": "tgi",
    "messages": [
        {
            "role": "user",
            "content": "What is the weather like in New York?"
        }
    ],
    "tools": [
        {
            "type": "function",
            "function": {
                "name": "get_current_weather",
                "description": "Get the current weather",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA"
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location."
                        }
                    },
                    "required": ["location", "format"]
                }
            }
        }
    ],
    "tool_choice": "get_current_weather"
}'
OlivierDehaene's avatar
OlivierDehaene committed
265
// {"id":"","object":"text_completion","created":1709051640,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-native","choices":[{"index":0,"message":{"role":"assistant","tool_calls":{"id":0,"type":"function","function":{"description":null,"name":"tools","parameters":{"format":"celsius","location":"New York"}}}},"logprobs":null,"finish_reason":"eos_token"}],"usage":{"prompt_tokens":157,"completion_tokens":19,"total_tokens":176}}
Nicolas Patry's avatar
Nicolas Patry committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
```

<details>
  <summary>Tools used in example below</summary>

  ```python
    tools = [
        {
            "type": "function",
            "function": {
                "name": "get_current_weather",
                "description": "Get the current weather",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location.",
                        },
                    },
                    "required": ["location", "format"],
                },
            },
        },
        {
            "type": "function",
            "function": {
                "name": "get_n_day_weather_forecast",
                "description": "Get an N-day weather forecast",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location.",
                        },
                        "num_days": {
                            "type": "integer",
                            "description": "The number of days to forecast",
                        },
                    },
                    "required": ["location", "format", "num_days"],
                },
            },
        }
    ]
  ```

</details>

### Text Generation Inference Client

TGI provides a client library to interact with the Messages API and Tool functions. The client library is available in both synchronous and asynchronous versions.

```python
from text_generation import AsyncClient

# NOTE: tools defined above and removed for brevity

# Define an async function to encapsulate the async operation
async def main():
    client = AsyncClient(base_url="http://localhost:3000")

    # Use 'await' to wait for the async method 'chat' to complete
    response = await client.chat(
        max_tokens=100,
        seed=1,
        tools=tools,
        presence_penalty=-1.1,
        messages=[
            {
                "role": "system",
                "content": "You're a helpful assistant! Answer the users question best you can.",
            },
            {
                "role": "user",
                "content": "What is the weather like in Brooklyn, New York?",
            },
        ],
    )

    # Once the response is received, you can process it
    print(response.choices[0].message.tool_calls)

# Ensure the main async function is run in the event loop
if __name__ == "__main__":
    import asyncio
    asyncio.run(main())

OlivierDehaene's avatar
OlivierDehaene committed
365
# {"id":"","object":"text_completion","created":1709051942,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-native","choices":[{"index":0,"message":{"role":"assistant","tool_calls":{"id":0,"type":"function","function":{"description":null,"name":"tools","parameters":{"format":"celsius","location":"New York"}}}},"logprobs":null,"finish_reason":"eos_token"}],"usage":{"prompt_tokens":157,"completion_tokens":20,"total_tokens":177}}
Nicolas Patry's avatar
Nicolas Patry committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

```

### OpenAI integration

TGI exposes an OpenAI-compatible API, which means you can use OpenAI's client libraries to interact with TGI's Messages API and Tool functions.

However there are some minor differences in the API, for example `tool_choice="auto"` will ALWAYS choose the tool for you. This is different from OpenAI's API where `tool_choice="auto"` will choose a tool if the model thinks it's necessary.

```python
from openai import OpenAI

# Initialize the client, pointing it to one of the available models
client = OpenAI(
    base_url="http://localhost:3000/v1",
    api_key="_",
)

# NOTE: tools defined above and removed for brevity

chat_completion = client.chat.completions.create(
    model="tgi",
    messages=[
        {
            "role": "system",
            "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.",
        },
        {
            "role": "user",
            "content": "What's the weather like the next 3 days in San Francisco, CA?",
        },
    ],
    tools=tools,
    tool_choice="auto",  # tool selected by model
    max_tokens=500,
)


called = chat_completion.choices[0].message.tool_calls
print(called)
# {
#     "id": 0,
#     "type": "function",
#     "function": {
#         "description": None,
#         "name": "tools",
#         "parameters": {
#             "format": "celsius",
#             "location": "San Francisco, CA",
#             "num_days": 3,
#         },
#     },
# }
```