vlm_causal_lm.py 14.3 KB
Newer Older
1
from itertools import repeat
2
3
4
5
6
import torch
from PIL import Image
from io import BytesIO

from opentelemetry import trace
Daniël de Kok's avatar
Daniël de Kok committed
7
from typing import Iterable, Optional, Tuple, List, Type, Dict
8
9
10
11

from transformers import PreTrainedTokenizerBase
from transformers.image_processing_utils import select_best_resolution
from text_generation_server.pb import generate_pb2
12
13
14
from text_generation_server.models.flash_causal_lm import (
    FlashCausalLMBatch,
    FlashCausalLM,
15
)
16
from transformers import AutoProcessor
17
18
19

tracer = trace.get_tracer(__name__)

20
21
22
IDEFICS2_FAKE_TOKEN = "<fake_token_around_image>"
IDEFICS2_IMAGE_TOKEN = "<image>"

23
24
25
26
27
28
29

def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
    """
    Calculate the shape of the image patch grid after the preprocessing for images of any resolution.

    Args:
        image_size (`tuple`):
30
            The size of the input image in the format (height, width).
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
        grid_pinpoints (`List`):
            A list containing possible resolutions. Each item in the list should be a tuple or list
            of the form `(height, width)`.
        patch_size (`int`):
            The size of each image patch.

    Returns:
        tuple: The shape of the image patch grid in the format (width, height).
    """
    if not isinstance(grid_pinpoints, list):
        raise ValueError("grid_pinpoints should be a list of tuples or lists")

    height, width = select_best_resolution(image_size, grid_pinpoints)
    return height // patch_size, width // patch_size


47
def image_text_replacement(processor, image_input, config, image_id: int) -> str:
Nicolas Patry's avatar
Nicolas Patry committed
48
    if config.model_type == "idefics2":
49
50
51
52
53
        image_seq_len = 64
        image_str = f"{IDEFICS2_FAKE_TOKEN}{IDEFICS2_IMAGE_TOKEN * image_seq_len}{IDEFICS2_FAKE_TOKEN}"
        if processor.image_processor.do_image_splitting:
            image_str *= 5
        return image_str
Nicolas Patry's avatar
Nicolas Patry committed
54
55
56
57
58
    elif config.model_type == "llava_next":
        height, width = image_input["image_sizes"][image_id]
        num_features = get_number_of_features(height, width, config)
        from loguru import logger

59
60
61
        logger.info(
            f"Found {num_features} features in image of resolution {height}x{width}"
        )
Nicolas Patry's avatar
Nicolas Patry committed
62
        return "<image>" * num_features
drbh's avatar
drbh committed
63
64
65

    elif config.model_type == "paligemma":
        return "<image>" * config.text_config.num_image_tokens
Nicolas Patry's avatar
Nicolas Patry committed
66
67
68
69
    else:
        raise RuntimeError(f"Unknown config {config.model_type} for multimodal")


70
71
72
73
74
75
76
77
def image_text_replacement_fixup(config, text: str) -> str:
    if config.model_type == "idefics2":
        return text.replace(
            f"{IDEFICS2_FAKE_TOKEN}{IDEFICS2_FAKE_TOKEN}", IDEFICS2_FAKE_TOKEN
        )
    return text


Nicolas Patry's avatar
Nicolas Patry committed
78
def get_unpadded_features(
79
80
81
82
83
    original_height: int,
    original_width: int,
    npatches: int,
    num_patch_height: int,
    num_patch_width: int,
Nicolas Patry's avatar
Nicolas Patry committed
84
85
86
87
) -> Tuple[int, int]:
    current_height = npatches * num_patch_height
    current_width = npatches * num_patch_width

88
    aspect_ratio: float = original_width / original_height
Nicolas Patry's avatar
Nicolas Patry committed
89
    current_aspect_ratio: float = current_width / current_height
90

Nicolas Patry's avatar
Nicolas Patry committed
91
    if aspect_ratio > current_aspect_ratio:
92
93
94
        new_height = (original_height * current_width) // original_width
        padding = (current_height - new_height) // 2
        current_height = current_height - (2 * padding)
Nicolas Patry's avatar
Nicolas Patry committed
95
    else:
96
97
98
        new_width = (original_width * current_height) // original_height
        padding = (current_width - new_width) // 2
        current_width = current_width - (2 * padding)
Nicolas Patry's avatar
Nicolas Patry committed
99
100
101
102
103
104

    unpadded_features = current_height * current_width
    newline_features = current_height
    return (unpadded_features, newline_features)


105
106
107
108
109
110
111
112
113
114
115
116
def get_number_of_features(height: int, width: int, config) -> int:
    # From config
    # Hardcoded for CLIP for now
    # image_grid_pinpoints = [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
    image_grid_pinpoints = config.image_grid_pinpoints
    image_size = config.vision_config.image_size
    patch_size = config.vision_config.patch_size

    assert image_size % patch_size == 0

    npatches = image_size // patch_size

117
118
119
    # Dimensions are intentionally swapped to be bug-compatible with
    # upstream: https://github.com/LLaVA-VL/LLaVA-NeXT/issues/59
    num_patch_width, num_patch_height = get_anyres_image_grid_shape(
120
121
122
123
        [height, width],
        image_grid_pinpoints,
        image_size,
    )
Nicolas Patry's avatar
Nicolas Patry committed
124
125
126
    unpadded_features, newline_features = get_unpadded_features(
        height, width, npatches, num_patch_height, num_patch_width
    )
127
128
129
130
131
    # The base patch covers the entire image
    base_features = npatches**2
    return unpadded_features + newline_features + base_features


132
class VlmCausalLMBatch(FlashCausalLMBatch):
133
    pixel_values: Optional[List[torch.Tensor]]
Nicolas Patry's avatar
Nicolas Patry committed
134
    pixel_attention_mask: Optional[List[torch.Tensor]]
135
136
137
138
139
140
141
    image_sizes: Optional[List[Tuple[int, int]]]

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches):
        batch = super(VlmCausalLMBatch, cls).concatenate(batches)
        batch.pixel_values = None
Nicolas Patry's avatar
Nicolas Patry committed
142
        batch.pixel_attention_mask = None
143
144
145
146
147
148
149
        batch.image_sizes = None
        return batch

    @tracer.start_as_current_span("filter")
    def filter(self, request_ids: List[int]):
        batch = super().filter(request_ids)
        batch.pixel_values = None
Nicolas Patry's avatar
Nicolas Patry committed
150
        batch.pixel_attention_mask = None
151
152
153
154
        batch.image_sizes = None
        return batch

    @classmethod
Daniël de Kok's avatar
Daniël de Kok committed
155
156
157
    def batch_tokenized_inputs(
        cls, requests: Iterable[generate_pb2.Request], tokenizer, processor, config
    ):
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        # Process images first. We need all of them so that the processor
        # can make the image splits the same size. And we need the final
        # sizes to insert correct number of image tokens.
        images = []
        for r in requests:
            for chunk in r.input_chunks.chunks:
                chunk_type = chunk.WhichOneof("chunk")
                if chunk_type == "text":
                    pass
                elif chunk_type == "image":
                    image = Image.open(BytesIO(chunk.image.data))
                    if config.model_type == "llava_next":
                        images.append(image)
                    else:
                        images.append([image])
                else:
                    raise RuntimeError(f"Invalid chunk type {chunk_type}")

        if images:
            image_inputs = processor.image_processor(images, return_tensors="pt")
        else:
            image_inputs = None

181
182
        batch_inputs = []
        max_truncation = 0
183
        image_id = 0
184
185
        for r in requests:
            full_text = ""
Daniël de Kok's avatar
Daniël de Kok committed
186
187
188
189
190
            for chunk in r.input_chunks.chunks:
                chunk_type = chunk.WhichOneof("chunk")
                if chunk_type == "text":
                    full_text += chunk.text
                elif chunk_type == "image":
191
192
193
                    full_text += image_text_replacement(
                        processor, image_inputs, config, image_id
                    )
194
                    image_id += 1
195

196
197
            full_text = image_text_replacement_fixup(config, full_text)

198
199
200
201
            batch_inputs.append(full_text)
            max_truncation = max(max_truncation, r.truncate)

        batch_tokenized_inputs = tokenizer(
drbh's avatar
drbh committed
202
203
204
205
            batch_inputs,
            truncation=True,
            max_length=max_truncation,
            add_special_tokens=not config.model_type == "paligemma",
206
        )["input_ids"]
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        return batch_tokenized_inputs, image_inputs

    @classmethod
    def from_pb_processor(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        processor,
        config,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "VlmCausalLMBatch":
        batch_tokenized_inputs, image_inputs = cls.batch_tokenized_inputs(
            pb.requests, tokenizer, processor, config
        )
        batch = cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)
        if image_inputs is not None:
            batch.pixel_values = image_inputs["pixel_values"].to(device=device)
Nicolas Patry's avatar
Nicolas Patry committed
226
227
228
229
230
231
232
233
234
235
            if "pixel_attention_mask" in image_inputs:
                batch.pixel_attention_mask = image_inputs["pixel_attention_mask"].to(
                    device=device
                )
            else:
                batch.pixel_attention_mask = None
            if "image_sizes" in image_inputs:
                batch.image_sizes = image_inputs["image_sizes"].to(device=device)
            else:
                batch.image_sizes = None
236
237
        else:
            batch.pixel_values = None
Nicolas Patry's avatar
Nicolas Patry committed
238
            batch.pixel_attention_mask = None
239
240
241
242
            batch.image_sizes = None
        return batch


243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
class VlmCausalLM(FlashCausalLM):
    def __init__(
        self,
        model_id: str,
        *,
        processor_class=AutoProcessor,
        processor_kwargs=None,
        batch_class=VlmCausalLMBatch,
        revision,
        trust_remote_code: bool,
        **kwargs,
    ):
        if processor_kwargs is None:
            processor_kwargs = {}
        self.processor = processor_class.from_pretrained(
            model_id,
            revision=revision,
            trust_remote_code=trust_remote_code,
            **processor_kwargs,
        )
        self.batch_class = batch_class
        super().__init__(model_id=model_id, **kwargs)

266
267
    @property
    def batch_type(self) -> Type[VlmCausalLMBatch]:
268
269
270
271
        return self.batch_class

    def max_past(self) -> Optional[int]:
        return getattr(self.model.text_model, "max_past", None)
272
273

    def forward(
drbh's avatar
drbh committed
274
275
276
        self,
        batch: VlmCausalLMBatch,
        adapter_data: Optional[Dict[str, torch.Tensor]] = None,
277
278
279
280
281
282
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        # Model Forward
        if batch.speculative_ids is not None:
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
283
            kv_cache = self.kv_cache
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices

            speculative_ids = batch.speculative_ids

            B, speculative_length = speculative_ids.shape
            new_length = speculative_length + 1
            new_input_ids = torch.cat(
                [input_ids.unsqueeze(-1), speculative_ids], dim=1
            ).reshape(-1)
            arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
            arange_int = arange.to(dtype=torch.int32)
            new_position_ids = (
                position_ids.unsqueeze(-1).expand(B, new_length) + arange
            ).view(-1)
            slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
            input_lengths = (
                input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
            ).view(-1)

            # Add Copy the block tables for all members
            block_tables = (
                block_tables.unsqueeze(1)
                .expand(B, new_length, -1)
                .reshape(B * new_length, -1)
                .contiguous()
            )
            max_s = max_s + speculative_length

            input_ids = new_input_ids
            position_ids = new_position_ids
        else:
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
322
            kv_cache = self.kv_cache
323
324
325
326
327
328
329
330
331
332
333
334
335
336
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices

        if cu_seqlen_prefill is None and self.max_past() is not None:
            # In decode, not prefill, we're actually overwriting the KV-cache
            # in a circular buffer mode.
            # This makes sure the max_s for the decode pass is correct.
            max_s = min(self.max_past(), max_s)

        bs = input_ids.shape[0]
        # Try to find an associated cuda graph
Nicolas Patry's avatar
Nicolas Patry committed
337
338
339
340
341
342
343
        bs = input_ids.shape[0]
        sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs])
        if sorted_padded_bs:
            # Get associated cuda graph
            cuda_graph = self.cuda_graphs[sorted_padded_bs[0]]
        else:
            cuda_graph = None
344
345
346
347
348
349
350
351
352
353
354
355
356
        if cu_seqlen_prefill is not None or cuda_graph is None:
            logits, speculative_logits = self.model.forward(
                input_ids=input_ids,
                position_ids=position_ids,
                cu_seqlen_prefill=cu_seqlen_prefill,
                kv_cache=kv_cache,
                block_tables=block_tables,
                slots=slots,
                input_lengths=input_lengths,
                max_s=max_s,
                prefill_cache_indices=batch.prefill_cache_indices,
                lm_head_indices=lm_head_indices,
                pixel_values=batch.pixel_values,
Nicolas Patry's avatar
Nicolas Patry committed
357
                pixel_attention_mask=batch.pixel_attention_mask,
358
359
360
361
362
363
                image_sizes=batch.image_sizes,
            )
            if batch.prefill_cache_indices is not None:
                batch.prefill_cache_indices = None
            if batch.pixel_values is not None:
                batch.pixel_values = None
Nicolas Patry's avatar
Nicolas Patry committed
364
365
            if batch.pixel_attention_mask is not None:
                batch.pixel_attention_mask = None
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
            if batch.image_sizes is not None:
                batch.image_sizes = None
            return logits, speculative_logits

        # Copy inputs to the static inputs of the cuda graph
        # Static inputs are potentially padded
        cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
        cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
        cuda_graph["block_tables"][
            : block_tables.shape[0], : block_tables.shape[1]
        ] = block_tables
        cuda_graph["slots"].fill_(-1)
        cuda_graph["slots"][: slots.shape[0]] = slots
        cuda_graph["input_lengths"].zero_()
        cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths

        # Replay the graph
        cuda_graph["graph"].replay()

        # Slice output to the correct shape
        speculative_logits = (
            cuda_graph["speculative_logits"][:bs]
            if cuda_graph["speculative_logits"] is not None
            else None
        )
        logits = cuda_graph["logits"][:bs]
        return logits, speculative_logits