"torchvision/transforms/v2/functional/_meta.py" did not exist on "cba1c011a87dd14af10f97bcb113fa09a8e2b396"
model.py 15.7 KB
Newer Older
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import torch
import torch.distributed

from dataclasses import dataclass
from pathlib import Path
from typing import List, Tuple, Optional, Dict

from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from transformers.modeling_utils import no_init_weights

from bloom_inference.cache import CacheEntry
from bloom_inference.pb import generate_pb2
from bloom_inference.shard_model import shard_model, match_suffix
from bloom_inference.utils import (
    StoppingCriteria,
    NextTokenChooser,
    initialize_torch_distributed,
    set_default_dtype,
)

torch.manual_seed(0)


@dataclass
class Batch:
    batch_id: int
    request_ids: List[int]
    input_ids: Dict[str, torch.Tensor]
    all_input_ids: List[torch.Tensor]
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]

    @classmethod
    def from_batch_pb(
            cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
    ) -> "Batch":
        request_ids = []
        inputs = []
        next_token_choosers = []
        stopping_criterias = []

        # Parse batch
        for r in pb.requests:
            request_ids.append(r.id)
            inputs.append(r.inputs)
            next_token_choosers.append(
                NextTokenChooser(
                    temperature=r.parameters.temperature,
                    top_k=r.parameters.top_k,
                    top_p=r.parameters.top_p,
                    do_sample=r.parameters.do_sample,
                )
            )
            stopping_criterias.append(StoppingCriteria(max_new_tokens=r.max_new_tokens))

        input_ids = tokenizer(inputs, return_tensors="pt", padding=True).to(device)
        all_input_ids = input_ids["input_ids"].unsqueeze(-1)

        return cls(
            pb.id,
            request_ids,
            input_ids,
            all_input_ids,
            next_token_choosers,
            stopping_criterias,
        )

    @classmethod
    def from_cache_entry(cls, cache_entry: CacheEntry) -> "Batch":
        return cls(
            cache_entry.batch_id,
            cache_entry.request_ids,
            cache_entry.input_ids,
            cache_entry.all_input_ids,
            cache_entry.next_token_choosers,
            cache_entry.stopping_criterias,
        )

    @classmethod
    def from_batch_cached_pb(cls, pb: generate_pb2.BatchCached, cache) -> "Batch":
        if len(pb.batch_cached_ids) == 1:
            cache_entry = cache.pop(pb.batch_cached_ids[0])
            if cache_entry is None:
                raise ValueError(f"Batch ID {pb.batch_id} not found in cache")
            return cls.from_cache_entry(cache_entry)

        total_batch_size = pb.total_batch_size
        max_sequence_length = pb.max_sequence_length
        input_ids = {"input_ids": None, "attention_mask": None, "past_key_values": []}
        request_ids = []
        all_input_ids = []
        next_token_choosers = []
        stopping_criterias = []
        start_index = 0
        for i, batch_id in enumerate(pb.batch_cached_ids):
            cache_entry = cache.pop(batch_id)
            if cache_entry is None:
                raise ValueError(f"Batch ID {batch_id} not found in cache")
            request_ids.extend(cache_entry.request_ids)
            all_input_ids.extend(cache_entry.all_input_ids)
            next_token_choosers.extend(cache_entry.next_token_choosers)
            stopping_criterias.extend(cache_entry.stopping_criterias)

            batch_size = len(cache_entry.request_ids)
            end_index = start_index + batch_size
            sequence_length = max(len(entry) for entry in cache_entry.all_input_ids)

            if input_ids["input_ids"] is None:
                input_ids["input_ids"] = torch.empty(
                    (total_batch_size, 1),
                    dtype=cache_entry.input_ids["input_ids"].dtype,
                    device=cache_entry.input_ids["input_ids"].device,
                )

            input_ids["input_ids"][start_index:end_index] = cache_entry.input_ids[
                "input_ids"
            ]

            if input_ids["attention_mask"] is None:
                input_ids["attention_mask"] = torch.zeros(
                    (total_batch_size, max_sequence_length),
                    dtype=cache_entry.input_ids["attention_mask"].dtype,
                    device=cache_entry.input_ids["attention_mask"].device,
                )

            input_ids["attention_mask"][
            start_index:end_index, -sequence_length:
            ] = cache_entry.input_ids["attention_mask"][:, -sequence_length:]

            for j, past in enumerate(cache_entry.input_ids["past_key_values"]):
                # TODO: this could be done without the views by using indices
                past_keys = past[0]
                past_values = past[1]

                _, head_dim, padded_sequence_length = past_keys.shape

                past_keys = past_keys.view(
                    batch_size, -1, head_dim, padded_sequence_length
                )
                past_values = past_values.view(
                    batch_size, -1, padded_sequence_length, head_dim
                )
                num_heads = past_keys.shape[1]

                if j == len(input_ids["past_key_values"]):
                    padded_past_keys = torch.zeros(
                        (
                            total_batch_size,
                            num_heads,
                            head_dim,
                            max_sequence_length - 1,
                        ),
                        dtype=past_keys.dtype,
                        device=past_keys.device,
                    )
                    padded_past_values = torch.zeros(
                        (
                            total_batch_size,
                            num_heads,
                            max_sequence_length - 1,
                            head_dim,
                        ),
                        dtype=past_values.dtype,
                        device=past_values.device,
                    )
                    input_ids["past_key_values"].append(
                        [padded_past_keys, padded_past_values]
                    )

                input_ids["past_key_values"][j][0][
                start_index:end_index, :, :, -(sequence_length - 1):
                ] = past_keys[:, :, :, -(sequence_length - 1):]

                input_ids["past_key_values"][j][1][
                start_index:end_index, :, -(sequence_length - 1):, :
                ] = past_values[:, :, -(sequence_length - 1):, :]

                if (i + 1) == len(pb.batch_cached_ids):
                    input_ids["past_key_values"][j][0] = input_ids["past_key_values"][
                        j
                    ][0].view(total_batch_size * num_heads, head_dim, -1)
                    input_ids["past_key_values"][j][1] = input_ids["past_key_values"][
                        j
                    ][1].view(total_batch_size * num_heads, -1, head_dim)

            start_index += batch_size

        assert pb.request_ids == request_ids

        return cls(
            pb.id,
            request_ids,
            input_ids,
            all_input_ids,
            next_token_choosers,
            stopping_criterias,
        )


@dataclass
class FinishedGeneration:
    request_id: str
    output: str

    def to_pb(self) -> generate_pb2.FinishedGeneration:
        return generate_pb2.FinishedGeneration(id=self.request_id, output=self.output)


class BLOOM:
    def __init__(self, model_name: str):
        if torch.cuda.is_available():
            self.device = torch.device("cuda")
        else:
            self.device = torch.device("cpu")

        self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
        self.model = (
            AutoModelForCausalLM.from_pretrained(model_name).eval().to(self.device)
        )
        self.num_heads = self.model.base_model.num_heads

    def forward(self, input_ids, attention_mask, past_key_values: Optional = None):
        # Model Forward
        return self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=True,
        )

    def generate_token(
            self, batch: Batch
    ) -> Tuple[List[FinishedGeneration], Optional[CacheEntry]]:
        with torch.no_grad():
            outputs = self.forward(**batch.input_ids)

        # List of indices to cache
        cache_indices = []
        cache_past_indices = []

        # New input_ids for next forward; keep in cache
        cache_next_input_ids = []
        cache_all_input_ids = []

        # Finished requests
        finished_generations: List[FinishedGeneration] = []

        # Zipped iterator
        iterator = zip(
            batch.request_ids,
            outputs.logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
        )

        # For each member of the batch
        for i, (
                request_id,
                logits,
                next_token_chooser,
                stopping_criteria,
                all_tokens,
        ) in enumerate(iterator):
            # Select next token
            next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])

            # Append next token to all tokens
            all_tokens = torch.cat([all_tokens, next_token])

            # Evaluate stopping criteria
            if stopping_criteria(all_tokens):
                # Decode all tokens
                output = self.tokenizer.decode(
                    all_tokens.squeeze(-1), skip_special_tokens=True
                )
                # Add to the list of finished generations with the original request id
                finished_generations.append(FinishedGeneration(request_id, output))
            # must be added to the cache
            else:
                cache_indices.append(i)
                cache_past_indices.extend([j for j in range(i * self.num_heads, (i + 1) * self.num_heads)])
                cache_next_input_ids.append(next_token)
                cache_all_input_ids.append(all_tokens)

        # No cache is needed, we finished all generations in the batch
        if not cache_indices:
            return finished_generations, None

        # If we finished at least one generation
        cache_input_ids = {"input_ids": torch.cat(cache_next_input_ids, dim=0)}
        if finished_generations:
            # Apply indices to attention mask, past key values and other items that need to be cached
            cache_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
                cache_indices
            ]
            cache_input_ids["past_key_values"] = [
                (keys[cache_past_indices], values[cache_past_indices])
                for keys, values in outputs["past_key_values"]
            ]
            cache_request_ids = [batch.request_ids[i] for i in cache_indices]
            cache_next_token_choosers = [
                batch.next_token_choosers[i] for i in cache_indices
            ]
            cache_stopping_criterias = [
                batch.stopping_criterias[i] for i in cache_indices
            ]
        else:
            cache_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
            cache_input_ids["past_key_values"] = outputs["past_key_values"]
            cache_request_ids = batch.request_ids
            cache_next_token_choosers = batch.next_token_choosers
            cache_stopping_criterias = batch.stopping_criterias

        # Update attention_mask with padding as we added a new token to input_ids
        cache_input_ids["attention_mask"] = torch.cat(
            [
                cache_input_ids["attention_mask"],
                torch.ones((cache_input_ids["attention_mask"].shape[0], 1)).to(
                    cache_input_ids["attention_mask"].device
                ),
            ],
            dim=1,
        )

        cache_entry = CacheEntry(
            batch.batch_id,
            cache_request_ids,
            cache_input_ids,
            cache_all_input_ids,
            cache_next_token_choosers,
            cache_stopping_criterias,
        )
        return finished_generations, cache_entry


class BLOOMSharded(BLOOM):
    def __init__(self, model_name: str, shard_directory: Path):
        super(BLOOM, self).__init__()
        self.process_group, self.rank, self.world_size = initialize_torch_distributed()
        self.master = self.rank == 0
        if torch.cuda.is_available():
            self.device = torch.device(f"cuda:{self.rank}")
            dtype = torch.bfloat16
        else:
            self.device = torch.device("cpu")
            dtype = torch.float32

        self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")

        # shard state_dict
        if self.master:
            # TODO @thomasw21 do some caching
            shard_state_dict_paths = shard_model(
                model_name, shard_directory, tp_world_size=self.world_size, dtype=dtype
            )
            shard_state_dict_paths = [
                str(path.absolute()) for path in shard_state_dict_paths
            ]
        else:
            shard_state_dict_paths = [None] * self.world_size

        torch.distributed.broadcast_object_list(
            shard_state_dict_paths, src=0, group=self.process_group
        )
        shard_state_dict_path = shard_state_dict_paths[self.rank]

        config = AutoConfig.from_pretrained(
            model_name, slow_but_exact=False, tp_parallel=True
        )
        config.pad_token_id = 3

        # The flag below controls whether to allow TF32 on matmul. This flag defaults to False
        # in PyTorch 1.12 and later.
        torch.backends.cuda.matmul.allow_tf32 = True

        # The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
        torch.backends.cudnn.allow_tf32 = True

        with set_default_dtype(dtype):
            with no_init_weights():
                # we can probably set the device to `meta` here?
                model = AutoModelForCausalLM.from_config(config).to(dtype)

        torch.distributed.barrier(group=self.process_group)
        # print_rank_0(f"Initialized model")
        state_dict = torch.load(shard_state_dict_path)
        # TODO @thomasw21: HACK in order to transpose all weight prior
        for key in state_dict.keys():
            do_transpose = False
            if not match_suffix(key, "weight"):
                continue

            for potential_suffix in [
                "self_attention.query_key_value.weight",
                "self_attention.dense.weight",
                "dense_h_to_4h.weight",
                "dense_4h_to_h.weight",
            ]:
                if match_suffix(key, potential_suffix):
                    do_transpose = True

            if do_transpose:
                state_dict[key] = state_dict[key].transpose(1, 0).contiguous()

        model.load_state_dict(state_dict)
        self.model = model.to(self.device).eval()
        self.num_heads = config.n_head // self.process_group.size()
        torch.distributed.barrier(group=self.process_group)

    def forward(self, input_ids, attention_mask, past_key_values: Optional = None):
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=True,
        )

        logits_shard = outputs.logits[:, -1, :].contiguous()

        batch_size, vocab_shard_size = logits_shard.shape
        vocab_size = self.world_size * vocab_shard_size
        logits = [torch.empty_like(logits_shard) for _ in range(self.world_size)]
        torch.distributed.all_gather(logits, logits_shard, group=self.process_group)
        logits = torch.cat(logits, dim=1).view(batch_size, 1, vocab_size)

        outputs.logits = logits
        return outputs