galactica.py 12.6 KB
Newer Older
1
2
3
4
5
6
7
8
import re
import torch
import torch.distributed

from typing import List, Optional, Type

from accelerate import init_empty_weights
from safetensors import safe_open
9
10
11
12
13
14
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoConfig,
    PreTrainedTokenizerBase,
)
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from transformers.models.opt.parallel_layers import (
    TensorParallelColumnLinear,
    TensorParallelEmbedding,
    TensorParallelRowLinear,
)

from text_generation.models import CausalLM
from text_generation.pb import generate_pb2
from text_generation.models.causal_lm import CausalLMBatch
from text_generation.utils import (
    NextTokenChooser,
    StoppingCriteria,
    initialize_torch_distributed,
    weight_files,
    download_weights,
)

HAS_BITS_AND_BYTES = True
try:
    import bitsandbytes as bnb
    from bitsandbytes.nn import Int8Params
except Exception as e:
    HAS_BITS_AND_BYTES = False


# CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py

# we split individual characters inside special tokens like [START_DNA]
CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])")

# token added to implement a custom sequence tokenization. This token is added at
# corpus cleaning step and removed in pretokenization. The digits are added to increase the chance
# that they do not occur in the corpus. The digits are escaped so that the token does not appear
# literally in the source code in case we ever include it in the training data.
SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E"


def _insert_split_marker(m: re.Match):
    """
    Applies split marker based on a regex match of special tokens such as
    [START_DNA].
    Parameters
    ----------
    n : str
        Input text to split
    Returns
    ----------
    str - the text with the split token added
    """
    start_token, _, sequence, end_token = m.groups()
    sequence = re.sub(r"(.)", rf"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL)
    return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}"


def escape_custom_split_sequence(text):
    """
    Applies custom splitting to the text for GALILEO's tokenization
    Parameters
    ----------
    text : str
        Input text to split
    Returns
    ----------
    str - the text with the split token added
    """
    return CUSTOM_SEQ_RE.sub(_insert_split_marker, text)


# END CREDIT


class GalacticaCausalLMBatch(CausalLMBatch):
    @classmethod
    def from_pb(
89
90
91
92
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
93
    ) -> "GalacticaCausalLMBatch":
94
95
96
97
98
99
100
101
102
103
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        input_lengths = []

        # Parse batch
        for r in pb.requests:
            # Add escape_custom_split_sequence to the CausalLMBatch logic
            inputs.append(escape_custom_split_sequence(r.inputs))
            input_lengths.append(r.input_length)
104
            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
105
            stopping_criterias.append(
106
                StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
107
108
            )

109
110
        # Tokenize batch
        pad_to_multiple_of = 8 if device.type == "cuda" else None
111
        tokenized_inputs = tokenizer(
112
113
114
115
116
            inputs,
            return_tensors="pt",
            padding=True,
            pad_to_multiple_of=pad_to_multiple_of,
            return_token_type_ids=False,
117
        ).to(device)
118
119
        position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
        position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
120
121
122
123
124
125
126
        all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
127
            position_ids=position_ids,
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
            past_key_values=None,
            all_input_ids=all_input_ids,
            input_lengths=input_lengths,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=pb.size,
            max_sequence_length=max(input_lengths),
        )


class Galactica(CausalLM):
    @property
    def batch_type(self) -> Type[CausalLMBatch]:
        return GalacticaCausalLMBatch

143
144
145
146
147
148
    def decode(self, generated_ids: List[int]) -> str:
        # Do not skip special tokens as they are used for custom parsing rules of the generated text
        return self.tokenizer.decode(
            generated_ids, skip_special_tokens=False, cleanup_tokenization_spaces=False
        )

149
150

class GalacticaSharded(Galactica):
151
152
153
    def __init__(
        self, model_name: str, revision: Optional[str] = None, quantize: bool = False
    ):
154
155
156
157
158
159
160
161
162
163
164
165
        if not model_name.startswith("facebook/galactica"):
            raise ValueError(f"Model {model_name} is not supported")

        self.process_group, self.rank, self.world_size = initialize_torch_distributed()
        self.master = self.rank == 0
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{self.rank}")
            dtype = torch.bfloat16
        else:
            device = torch.device("cpu")
            dtype = torch.float32

166
167
168
        tokenizer = AutoTokenizer.from_pretrained(
            model_name, revision=revision, padding_side="left"
        )
169

170
171
172
        config = AutoConfig.from_pretrained(
            model_name, revision=revision, tp_parallel=True
        )
173
174
175
176
        tokenizer.pad_token_id = config.pad_token_id

        # Only download weights for small models
        if self.master and model_name == "facebook/galactica-125m":
177
            download_weights(model_name, revision=revision, extension=".safetensors")
178
179

        torch.distributed.barrier(group=self.process_group)
180
181
182
        filenames = weight_files(
            model_name, revision=revision, extension=".safetensors"
        )
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        if not filenames:
            raise ValueError("No safetensors weights found")

        with init_empty_weights():
            model = AutoModelForCausalLM.from_config(config)

        torch.distributed.barrier(group=self.process_group)
        self.load_weights(
            model,
            filenames,
            quantize=quantize,
            device=device,
            rank=self.rank,
            world_size=self.world_size,
        )
        self.model = model.eval().to(dtype)
        torch.distributed.barrier(group=self.process_group)
        super(CausalLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )

    @staticmethod
    def load_weights(
        model,
        filenames: List[str],
        quantize: bool,
        device: torch.device,
        rank: int,
        world_size: int,
    ):
        parameters = dict(model.named_parameters())
        for file in filenames:
            with safe_open(
                file, framework="pt", device=str(device) if not quantize else "cpu"
            ) as f:
                for name in f.keys():
                    if name == "lm_head.weight":
                        continue

                    module_name, param_name = name.rsplit(".", 1)
224
                    module = model.get_submodule(module_name)
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
                    current_tensor = parameters[name]

                    slice_ = f.get_slice(name)

                    if isinstance(module, TensorParallelColumnLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                        else:
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                    elif isinstance(module, TensorParallelRowLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[1]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[:, start:stop]
                        else:
                            tensor = slice_[:]
                            # XXX: Hack for Rowlinear to add the bias only once.
                            if rank != 0:
                                tensor = torch.zeros_like(tensor)
                    elif isinstance(module, TensorParallelEmbedding):
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    else:
                        tensor = slice_[:]

                    if current_tensor.shape != tensor.shape:
                        raise ValueError(
                            f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
                        )

                    tensor = tensor.contiguous()

                    if quantize:
                        if not HAS_BITS_AND_BYTES:
                            raise ImportError(
                                "bitsandbytes is not available on your machine either because it is not installed "
                                "or you don't have a GPU.\n"
                                "You can install it with `pip install bitsandbytes`."
                            )

                        if (
                            type(module)
                            in [TensorParallelRowLinear, TensorParallelColumnLinear]
                            and param_name == "weight"
                        ):
                            tensor = Int8Params(
284
                                tensor,
285
286
287
288
289
290
291
292
293
294
295
296
297
                                has_fp16_weights=False,
                                requires_grad=False,
                            ).to(device)
                            state = bnb.MatmulLtState()
                            state.threshold = 6.0
                            state.has_fp16_weights = False
                            state.memory_efficient_backward = False
                            state.use_pool = True
                            state.CB = tensor.CB
                            state.SCB = tensor.SCB
                            tensor.CB = None
                            tensor.SCB = None

298
                            def replace_linear(state):
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
                                def linear(input, weight, bias):
                                    out = bnb.matmul(
                                        input,
                                        weight,
                                        state=state,
                                        threshold=state.threshold,
                                        bias=bias,
                                    )

                                    if state.CB is not None:
                                        # we converted 8-bit row major to turing/ampere format
                                        # in the first inference pass
                                        # we no longer need the row-major weight
                                        del state.CB
                                        weight.data = state.CxB

315
                                    return out
316
317
318

                                return linear

319
                            module.linear = replace_linear(state)
320
321
322
323
324
325
326
327

                        else:
                            tensor = tensor.to(device)

                    module._parameters[param_name] = tensor
                    if name == "model.decoder.embed_tokens.weight":
                        model.lm_head._parameters["weight"] = tensor

328
329
330
    def forward(
        self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
    ):
331
332
333
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
334
            position_ids=position_ids,
335
336
337
338
339
            past_key_values=past_key_values,
            use_cache=True,
        )

        # Logits are sharded, so we need to gather them
OlivierDehaene's avatar
OlivierDehaene committed
340
341
342
        logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)]
        torch.distributed.all_gather(logits, outputs.logits, group=self.process_group)
        logits = torch.cat(logits, dim=2)
343
344

        return logits, outputs.past_key_values