marlin.py 11.4 KB
Newer Older
1
from dataclasses import dataclass
2
from typing import List, Optional, Tuple
3
4
5

import torch
import torch.nn as nn
6
7
from text_generation_server.utils.import_utils import SYSTEM

8
try:
9
    import marlin_kernels
10
except ImportError:
11
    marlin_kernels = None
12
13
14
15
16
17
18

try:
    major, _minor = torch.cuda.get_device_capability()
    has_sm_8_0 = major >= 8
except Exception:
    has_sm_8_0 = False

19
20
21

GPTQ_MARLIN_BITS = [4, 8]
GPTQ_MARLIN_GROUP_SIZES = [-1, 32, 64, 128]
22
23
24
MARLIN_TILE_SIZE = 16


25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def _check_marlin_kernels():
    if not (SYSTEM == "cuda" and has_sm_8_0):
        raise NotImplementedError(
            "Using quantized Marlin models requires a GPU with CUDA capability 8.0 or later."
        )

    if marlin_kernels is None:
        raise NotImplementedError(
            "marlin is not installed, install it with: pip install server/marlin"
        )


def _check_valid_shape(in_features: int, out_features: int):
    if (in_features % 128 != 0 or out_features % 64 != 0) and (
        in_features % 64 != 0 or out_features % 128 != 0
    ):
        raise ValueError(
            f"The GPTQ Marlin kernel does not have a valid thread configuration for weight matrix with shape ({out_features}, {in_features})."
            " The shape elements must be divisible by (128, 64) or (64, 128)."
        )


# https://github.com/IST-DASLab/marlin/blob/2f6d7c10e124b3c5fa29ff8d77d568bd7af3274c/marlin/__init__.py#L40C1-L68C54
def _get_perms() -> Tuple[List[int], List[int]]:
    scale_perm = []
    for i in range(8):
        scale_perm.extend([i + 8 * j for j in range(8)])
    scale_perm_single = []
    for i in range(4):
        scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
    return scale_perm, scale_perm_single


_scale_perm, _scale_perm_single = _get_perms()


def permute_scales(scales: torch.Tensor):
    out_features = scales.shape[1]
    if scales.shape[0] == 1:
        scales = scales.reshape((-1, len(_scale_perm_single)))[:, _scale_perm_single]
    else:
        scales = scales.reshape((-1, len(_scale_perm)))[:, _scale_perm]
    return scales.reshape((-1, out_features)).contiguous()


@dataclass
class GPTQMarlinWeight:
    """
    Repacked GPTQ Marlin weights.
    """

    qweight: torch.Tensor
    scales: torch.Tensor
    g_idx: torch.Tensor
    perm: torch.Tensor
    bits: int
    is_full_k: bool

    def __post_init__(self):
        assert self.qweight.dtype == torch.int32
        assert self.scales.dtype == torch.float16
        assert self.g_idx.dtype == torch.int32
        assert self.perm.dtype == torch.int32


def repack_gptq_for_marlin(
    *,
    qweight: torch.Tensor,
    scales: torch.Tensor,
    g_idx: torch.Tensor,
    bits: int,
    desc_act: bool,
    groupsize: int,
    sym: bool,
    sharded_infeatures: bool,
) -> GPTQMarlinWeight:
    """Convert GPTQ weights to a layout that's compatible with GPTQ-Marlin kernels."""
    _check_marlin_kernels()
    assert marlin_kernels is not None

    if bits not in GPTQ_MARLIN_BITS:
        supported_bits = ", ".join(str(b) for b in GPTQ_MARLIN_BITS)
        raise RuntimeError(
            f"Repacking {bits}-bit GPTQ weights as Marlin is not supported, must be one of: {supported_bits}"
        )

    if groupsize not in GPTQ_MARLIN_GROUP_SIZES:
        supported_sizes = ", ".join(str(b) for b in GPTQ_MARLIN_GROUP_SIZES)
        raise RuntimeError(
            f"Repacking GPTQ weights with group size {groupsize} as Marlin is not supported, must be one of: {supported_sizes}"
        )
    if not sym:
        raise RuntimeError(
            "Repacking GPTQ weights with asymmetric quantization as Marlin is not supported."
        )

    weights_per_int = 32 // bits
    in_features = qweight.shape[0] * weights_per_int
    out_features = qweight.shape[1]

    if in_features % groupsize != 0:
        raise ValueError(
            f"Number of input features ({in_features}) not divisible by group size ({groupsize})"
        )

    if desc_act and groupsize != -1:
        perm = torch.argsort(g_idx).to(torch.int)
        g_idx = g_idx[perm]
    else:
        perm = torch.empty(0, dtype=torch.int, device=qweight.device)
        g_idx = torch.empty(0, dtype=torch.int, device=qweight.device)

    repacked = marlin_kernels.gptq_marlin_repack(
        qweight, perm, in_features, out_features, bits
    )

    scales = permute_scales(scales)

    is_full_k = not (desc_act and sharded_infeatures)

    return GPTQMarlinWeight(
        qweight=repacked,
        scales=scales,
        g_idx=g_idx,
        perm=perm,
        bits=bits,
        is_full_k=is_full_k,
    )


class GPTQMarlinLinear(nn.Module):
    """
    Linear layer for GPTQ weights that were converted for the GPTQ-Marlin
    kernels.
    """

    def __init__(
        self,
        *,
        weight: GPTQMarlinWeight,
        bias: Optional[torch.Tensor],
    ):
        super().__init__()

        _check_marlin_kernels()
        assert marlin_kernels is not None

        in_features = weight.qweight.shape[0] * MARLIN_TILE_SIZE
        out_features = weight.scales.shape[1]
        _check_valid_shape(in_features=in_features, out_features=out_features)

        self.bits = weight.bits
        self.is_full_k = weight.is_full_k

179
180
181
182
        self.qweight = weight.qweight
        self.scales = weight.scales
        self.g_idx = weight.g_idx
        self.perm = weight.perm
183
        if bias is not None:
184
            self.bias = bias
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
        else:
            self.bias = None

        self.workspace = torch.zeros(
            out_features // 64 * 16, dtype=torch.int, device=weight.qweight.device
        )

    def forward(self, A: torch.Tensor) -> torch.Tensor:
        assert marlin_kernels is not None

        A_flat = A.view(-1, A.shape[-1])
        C = marlin_kernels.gptq_marlin_gemm(
            A_flat,
            self.qweight,
            self.scales,
            self.g_idx,
            self.perm,
            self.workspace,
            self.bits,
            A_flat.shape[0],
            self.scales.shape[1],
            A_flat.shape[1],
            self.is_full_k,
        )
        C = C.reshape(A.shape[:-1] + (self.scales.shape[1],))

        if self.bias is not None:
            C += self.bias

        return C


217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
GPTQ_MARLIN_24_MIN_THREAD_N = 128
GPTQ_MARLIN_24_MIN_THREAD_K = 128
GPTQ_MARLIN_24_MAX_PARALLEL = 64
GPTQ_MARLIN_24_SUPPORTED_NUM_BITS = [4, 8]
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES = [-1, 128]


@dataclass
class GPTQMarlin24Weight:
    """
    GPTQ-Marlin 2:4 weights.

    Attributes:
        B (torch.Tensor): int4-quantized weights packed into int32.
        B_meta (torch.Tensor): metadata for 2:4 sparsity.
        s (torch.Tensor): float16 scales.
        bits: quantized weight size.
    """

    B: torch.Tensor
    B_meta: torch.Tensor
    s: torch.Tensor
    bits: int

    def __post_init__(self):
        assert self.B.dtype == torch.int32
        assert self.B_meta.dtype == torch.int16
        assert self.s.dtype == torch.float16


class GPTQMarlin24Linear(nn.Module):
    def __init__(self, *, weight: GPTQMarlin24Weight, bias: Optional[torch.Tensor]):
        super().__init__()

        _check_marlin_kernels()
        assert marlin_kernels is not None

        if weight.bits not in GPTQ_MARLIN_BITS:
            supported_bits = ", ".join(str(b) for b in GPTQ_MARLIN_BITS)
            raise RuntimeError(
                f"{weight.bits}-bit GPTQ Sparse 2:4 Marlin is not supported, must be one of: {supported_bits}"
            )

        in_features = weight.B.shape[0] * MARLIN_TILE_SIZE * 2
        out_features = weight.s.shape[1]
        groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]

        if groupsize not in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES:
            supported_sizes = ", ".join(
                str(b) for b in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
            )
            raise RuntimeError(
                f"Group size {groupsize} is not supported, must be one of: {supported_sizes}"
            )

        self.bits = weight.bits
        weights_per_int32 = 32 // self.bits

        assert (
            out_features % GPTQ_MARLIN_24_MIN_THREAD_N == 0
        ), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_N} threads"
        assert (
            out_features % weights_per_int32 == 0
        ), f"Number of output features ({out_features}) not divisable by weights per int32 ({weights_per_int32})"

        assert (
            in_features % GPTQ_MARLIN_24_MIN_THREAD_K == 0
        ), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_K} threads"
        if groupsize != -1 and in_features % groupsize != 0:
            raise ValueError(
                f"Number of input features ({in_features}) not divisable by group size ({groupsize})"
            )

        self.B = weight.B
        self.B_meta = weight.B_meta
        self.s = weight.s
        if bias is not None:
            self.bias = bias
        else:
            self.bias = None

        self.workspace = torch.zeros(
            (out_features // GPTQ_MARLIN_24_MIN_THREAD_N) * GPTQ_MARLIN_24_MAX_PARALLEL,
            dtype=torch.int,
            device=weight.B.device,
        )

    def forward(self, A: torch.Tensor) -> torch.Tensor:
        assert marlin_kernels is not None

        C = marlin_kernels.gptq_marlin_24_gemm(
            A.view(-1, A.shape[-1]),
            self.B,
            self.B_meta,
            self.s,
            self.workspace,
            self.bits,
            A.shape[0],
            self.s.shape[1],
            A.shape[1],
        )

        C = C.reshape(A.shape[:-1] + (self.s.shape[1],))

        if self.bias is not None:
            C += self.bias

        return C


327
328
329
330
331
332
333
334
335
336
337
338
339
@dataclass
class MarlinWeight:
    """
    Marlin weights.

    Attributes:
        B (torch.Tensor): int4-quantized weights packed into int32.
        s (torch.Tensor): float16 scales.
    """

    B: torch.Tensor
    s: torch.Tensor

340
341
342
343
    def __post_init__(self):
        assert self.B.dtype == torch.int32
        assert self.s.dtype == torch.float16

344
345

class MarlinLinear(nn.Module):
346
    def __init__(self, *, weight: MarlinWeight, bias: Optional[torch.Tensor]):
347
348
        super().__init__()

349
350
        _check_marlin_kernels()
        assert marlin_kernels is not None
351

352
353
        in_features = weight.B.shape[0] * MARLIN_TILE_SIZE
        out_features = weight.s.shape[1]
354
355
356
357
358
359
360
        assert (
            in_features % 128 == 0
        ), f"Number of input features ({in_features}) not divisable by 128"
        assert (
            out_features % 256 == 0
        ), f"Number of output features ({out_features}) not divisable by 256"

361
362
        groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]
        assert groupsize in {
363
364
            -1,
            128,
365
        }, f"Group size must be -1 or 128, was {groupsize}"
366

367
368
        self.B = weight.B
        self.s = weight.s
369
        if bias is not None:
370
            self.bias = bias
371
372
373
374
        else:
            self.bias = None

        self.workspace = torch.zeros(
375
            out_features // 64 * 16, dtype=torch.int, device=weight.B.device
376
377
378
        )

    def forward(self, A: torch.Tensor) -> torch.Tensor:
379
380
381
382
        assert marlin_kernels is not None

        C = marlin_kernels.marlin_gemm(
            A.view(-1, A.shape[-1]),
383
384
385
            self.B,
            self.s,
            self.workspace,
386
387
388
            A.shape[0],
            self.s.shape[1],
            A.shape[1],
389
        )
390
        C = C.reshape(A.shape[:-1] + (self.s.shape[1],))
391
392
393
394
395

        if self.bias is not None:
            C += self.bias

        return C