tensor_parallel.py 9.5 KB
Newer Older
xuxzh1's avatar
last  
xuxzh1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import torch
from torch.nn import functional as F
from typing import Iterable, List
from text_generation_server.layers.linear import get_linear, FastLinear
from text_generation_server.layers.exl2 import Exl2Weight
from text_generation_server.utils.import_utils import SYSTEM

if SYSTEM == "ipex":
    import intel_extension_for_pytorch as ipex


class LayerConcat(torch.nn.Module):
    """
    Apply multiple layers to the input and concatenate their
    outputs.
    """

    def __init__(self, layers: Iterable[torch.nn.Module], dim: int = -1):
        """
        `dim` is the dimension along which layer outputs are concatenated.
        """
        super().__init__()
        self.layers = layers
        self.dim = dim

    def forward(self, x: torch.Tensor):
        outputs = [layer(x) for layer in self.layers]
        return torch.cat(outputs, self.dim)


class SuperLayer(torch.nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


class TensorParallelHead(SuperLayer):
    def __init__(self, linear, process_group, should_gather: bool):
        super().__init__(linear)
        self.process_group = process_group
        self.should_gather = should_gather

    @staticmethod
    def load(config, prefix: str, weights):
        if config.quantize == "exl2":
            try:
                # If the piece and LM head embeddings are shared, we have
                # non-quantized weights...
                weight = weights.get_tensor(f"{prefix}.weight")
            except:
                # ...otherwise they are quantized.
                weight = weights.get_weights_col(prefix, config.quantize)
            should_gather = weights.process_group.size() > 1
        elif weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False

        # GPTQ,AWQ,EETQ don't quantize heads (nor embeddings)
        if config.quantize in ["gptq", "awq", "eetq", "marlin"]:
            quantize = None
        # See above, exl2 LM head can be quantized or not.
        elif config.quantize == "exl2" and not isinstance(weight, Exl2Weight):
            quantize = None
        else:
            quantize = config.quantize

        return TensorParallelHead(
            get_linear(weight, bias=None, quantize=quantize),
            process_group=weights.process_group,
            should_gather=should_gather,
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        if not self.should_gather:
            return super().forward(input)

        world_size = self.process_group.size()
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
            out_dim = self.linear.weight.shape[0]

            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T

            torch.mm(input, self.linear.weight.T, out=local_out)
            if SYSTEM == "ipex":
                ipex.distributed.all_gather_into_tensor(
                    world_out, gather_input, group=self.process_group
                )
            else:
                torch.distributed.all_gather_into_tensor(
                    world_out, gather_input, group=self.process_group
                )

            if input.shape[0] == 1:
                return world_out
            return world_out.T

        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
        if SYSTEM == "ipex":
            ipex.distributed.all_gather(world_output, output, group=self.process_group)
        else:
            torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
    def load_gate_up(cls, config, prefix: str, weights, bias: bool):
        """Specific method when the QKV was joined after the fact"""
        weight = weights.get_weights_col_packed_gate_up(
            prefix, quantize=config.quantize
        )
        if bias:
            raise NotImplementedError("packed_gate_up only implemented without bias")
        else:
            bias = None
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)

    @classmethod
    def load_qkv(
        cls,
        config,
        prefix: str,
        weights,
        bias: bool,
        num_heads: int,
        num_key_value_heads: int,
    ):
        """Specific method when the QKV was joined after the fact"""
        weight = weights.get_weights_col_packed_qkv(
            prefix,
            quantize=config.quantize,
            num_heads=num_heads,
            num_key_value_heads=num_key_value_heads,
        )
        if bias:
            raise NotImplementedError("packed_qkv only implemented for baichuan")
        else:
            bias = None
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_weights_col(prefix, config.quantize)
        if bias:
            bias = weights.get_sharded(f"{prefix}.bias", dim=0)
        else:
            bias = None
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)

    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
        if config.quantize == "exl2":
            linears = []
            for prefix in prefixes:
                weight = weights.get_weights_col(prefix, config.quantize)
                b = weights.get_tensor(f"{prefix}.bias") if bias else None
                linears.append(get_linear(weight, b, config.quantize))
            linear = LayerConcat(linears)
        else:
            weight = weights.get_multi_weights_col(
                prefixes, quantize=config.quantize, dim=dim
            )
            if bias:
                b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
                bias = torch.cat(b, dim=dim)
            else:
                bias = None
            linear = get_linear(weight, bias, config.quantize)
        return cls(linear)


class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
        self.process_group = process_group

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias, config.quantize),
            process_group=weights.process_group,
        )

    def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor:
        out = super().forward(input)
        if self.process_group.size() > 1 and reduce:
            if SYSTEM == "ipex":
                ipex.distributed.all_reduce(out, group=self.process_group)
            else:
                torch.distributed.all_reduce(out, group=self.process_group)
        return out


class TensorParallelEmbedding(torch.nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

        block_size = (num_embeddings + world_size - 1) // world_size
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
        self.null_idx = weight.shape[
            0
        ]  # Usually block_size, might be less in non even vocab_size.
        self.process_group = weights.process_group
        self.reduce = reduce

        """Additional 0 entry used for masking"""
        self.weight = torch.nn.Parameter(F.pad(weight, (0, 0, 0, 1)))

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
        out = torch.nn.functional.embedding(input, self.weight)
        if self.reduce and self.process_group.size() > 1:
            if SYSTEM == "ipex":
                ipex.distributed.all_reduce(out, group=self.process_group)
            else:
                torch.distributed.all_reduce(out, group=self.process_group)
        return out