linear.py 8.63 KB
Newer Older
xuxzh1's avatar
last  
xuxzh1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from typing import Optional
import torch
from torch.nn import functional as F
from text_generation_server.utils.import_utils import SYSTEM

# if SYSTEM == "rocm":
#     try:
#         from vllm import _custom_C
#     except Exception as e:
#         raise ImportError(f"Could not load `vllm._custom_C`. Full error: {e}")


class FastLinear(torch.nn.Module):
    def __init__(
        self,
        weight,
        bias,
    ) -> None:
        super().__init__()
        self.weight = torch.nn.Parameter(weight, requires_grad=False)
        if bias is not None:
            self.bias = torch.nn.Parameter(bias, requires_grad=False)
        else:
            self.bias = None

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(weight, bias)

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return F.linear(input, self.weight, self.bias)


class FastLinearROCm(torch.nn.Module):
    def __init__(
        self,
        weight,
        bias,
    ) -> None:
        super().__init__()
        self.weight = torch.nn.Parameter(weight)
        if bias is not None:
            self.bias = torch.nn.Parameter(bias)
        else:
            self.bias = None

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(weight, bias)

    def forward(self, inp: torch.Tensor) -> torch.Tensor:
        weight = self.weight
        bias = self.bias

        if SYSTEM == "rocm" and inp.numel() // inp.shape[-1] == 1:
            batched = False
            inp_shape = inp.shape

            if inp.dim() == 3:
                inp = inp.view(-1, inp_shape[-1])
                batched = True

            m, k = weight.shape[0], inp_shape[1]
            out = torch.empty(
                inp_shape[0], weight.shape[0], dtype=inp.dtype, device="cuda"
            )
            # if (k == 8192 and (m == 1280 or m == 7168)) or (k == 3584 and m == 8192):
            #     _custom_C.LLMM1(weight, inp, out, 8)
            # elif k <= 8192 and k % 8 == 0 and m % 4 == 0:
            #     _custom_C.LLMM1(weight, inp, out, 4)
            # else:
            #     out = F.linear(inp, weight)

            if batched:
                out.view(*inp_shape[:-1], out.shape[-1])

            if bias is not None:
                out = out + bias
            return out
        return F.linear(inp, self.weight, self.bias)


def get_linear(weight, bias, quantize):
    if quantize is None:
        if SYSTEM == "rocm":
            # linear = FastLinearROCm(weight, bias) #TODO:can surport if add customized code.https://github.com/fxmarty/rocm-vllm/blob/main/csrc/custom/custom.cu
            linear = FastLinear(weight, bias)
        else:
            linear = FastLinear(weight, bias)
    elif quantize == "eetq":
        try:
            from text_generation_server.layers.eetq import EETQLinear

            linear = EETQLinear(weight, bias)
        except ImportError:
            raise ImportError(
                "Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
            )
    elif quantize == "fp8":
        from text_generation_server.layers.fp8 import Fp8Linear

        linear = Fp8Linear(weight, bias)
    elif quantize == "bitsandbytes":
        try:
            from text_generation_server.layers.bnb import (
                warn_deprecate_bnb,
                Linear8bitLt,
            )
        except ImportError:
            raise NotImplementedError(
                f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
            )
        warn_deprecate_bnb()
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
    elif quantize == "bitsandbytes-fp4":
        try:
            from text_generation_server.layers.bnb import Linear4bit
        except ImportError:
            raise NotImplementedError(
                f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
            )
        linear = Linear4bit(
            weight,
            bias,
            quant_type="fp4",
        )
    elif quantize == "bitsandbytes-nf4":
        try:
            from text_generation_server.layers.bnb import Linear4bit
        except ImportError:
            raise NotImplementedError(
                f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
            )
        linear = Linear4bit(
            weight,
            bias,
            quant_type="nf4",
        )
    elif quantize == "exl2":
        from text_generation_server.layers.exl2 import Exl2Weight

        if not isinstance(weight, Exl2Weight):
            raise NotImplementedError(
                f"The passed weight is not `exl2` compatible, loader needs to be updated."
            )

        from text_generation_server.layers.gptq import ExllamaQuantLinear

        linear = ExllamaQuantLinear(weight, bias)

    elif quantize == "gptq":
        from text_generation_server.layers.gptq import GPTQWeight
        from text_generation_server.layers.marlin import (
            GPTQMarlinLinear,
            GPTQMarlinWeight,
        )

        if isinstance(weight, GPTQMarlinWeight):
            linear = GPTQMarlinLinear(
                weight=weight,
                bias=bias,
            )
        elif isinstance(weight, GPTQWeight):
            if weight.use_exllama:
                try:
                    from text_generation_server.layers.gptq import (
                        ExllamaQuantLinear,
                    )
                except ImportError:
                    raise NotImplementedError(
                        f"Exllama gptq kernels are not installed. Install them `cd server/exllama_kernels && python setup.py install && cd ../exllamav2_kernels && python setup.py install`"
                    )

                linear = ExllamaQuantLinear(weight, bias)
            else:
                from text_generation_server.layers.gptq.quant_linear import QuantLinear

                linear = QuantLinear(
                    weight.qweight,
                    weight.qzeros,
                    weight.scales,
                    weight.g_idx,
                    bias,
                    weight.bits,
                    weight.groupsize,
                )
        else:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

    elif quantize == "awq":
        from text_generation_server.layers.gptq import GPTQWeight

        if not isinstance(weight, GPTQWeight):
            raise NotImplementedError(
                f"The passed weight is not `awq` compatible, loader needs to be updated."
            )
        if SYSTEM == "rocm":
            raise NotImplementedError(
                "AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead "
                "to use Exllama/GPTQ kernels for AWQ inference."
            )
        try:
            from text_generation_server.layers.awq.quantize.qmodule import WQLinear

            linear = WQLinear(
                w_bit=weight.bits,
                group_size=weight.groupsize,
                qweight=weight.qweight,
                qzeros=weight.qzeros,
                scales=weight.scales,
                bias=bias,
            )
        except ImportError:
            raise NotImplementedError(
                "You do not seem to have awq installed, either install it (cd server &&  make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
            )
    elif quantize == "marlin":
        from text_generation_server.layers.marlin import (
            GPTQMarlin24Linear,
            GPTQMarlin24Weight,
            MarlinLinear,
            MarlinWeight,
        )

        if isinstance(weight, GPTQMarlin24Weight):
            linear = GPTQMarlin24Linear(
                weight=weight,
                bias=bias,
            )
        elif isinstance(weight, MarlinWeight):
            linear = MarlinLinear(weight=weight, bias=bias)
        else:
            raise NotImplementedError(
                f"The passed weight is not `marlin` compatible, loader needs to be updated."
            )
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear