layernorm.py 5.65 KB
Newer Older
xuxzh1's avatar
last  
xuxzh1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
from torch import nn
from accelerate import init_empty_weights
from text_generation_server.utils.import_utils import (
    SYSTEM,
)


# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = torch.nn.Parameter(weight)
    ln.bias = torch.nn.Parameter(bias)
    return ln


@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = torch.nn.Parameter(weight)
    ln.bias = None
    return ln


torch.nn.LayerNorm.load = load_layer_norm
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias

if SYSTEM == "cuda":
    import dropout_layer_norm

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
            if hidden_states.shape[-1] > 8192:
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual

elif SYSTEM == "rocm":
    from vllm import _custom_ops

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
            if residual is not None:
                hidden_states += residual
            residual = hidden_states

            return super().forward(hidden_states), residual

elif SYSTEM == "ipex":
    import intel_extension_for_pytorch as ipex

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
            out = ipex.llm.functional.add_layer_norm(
                residual,
                hidden_states,
                self.weight,
                self.bias,
                self.eps,
                residual is not None,
            )
            return out, residual if residual is not None else hidden_states


class FastRMSNorm(nn.Module):
    def __init__(self, weight: torch.Tensor, eps: float):
        super().__init__()

        self.weight = nn.Parameter(weight)
        self.variance_epsilon = eps

    @classmethod
    def load(cls, prefix, weights, eps=1e-6):
        weight = weights.get_tensor(f"{prefix}.weight")
        return cls(weight, eps)

    def forward(self, hidden_states, residual=None):
        if SYSTEM == "ipex":
            out = ipex.llm.functional.add_rms_norm(
                residual,
                hidden_states,
                self.weight,
                None,
                self.variance_epsilon,
                residual is not None,
            )
            return out, residual if residual is not None else hidden_states
        elif hidden_states.shape[-1] > 8192:
            if residual is not None:
                hidden_states += residual
            residual = hidden_states

            hidden_states = hidden_states.to(torch.float32)
            variance = hidden_states.pow(2).mean(-1, keepdim=True)
            hidden_states = hidden_states * torch.rsqrt(
                variance + self.variance_epsilon
            )

            # convert into half-precision if necessary
            if self.weight.dtype in [torch.float16, torch.bfloat16]:
                hidden_states = hidden_states.to(self.weight.dtype)

            return self.weight * hidden_states, residual
        elif SYSTEM == "cuda":
            # faster post attention rms norm
            (
                normed_hidden_states,
                res,
                *rest,
            ) = dropout_layer_norm.dropout_add_ln_fwd(
                hidden_states,
                residual,
                self.weight,
                None,
                None,
                None,
                None,
                None,
                0.0,
                self.variance_epsilon,
                1.0,
                0,
                None,
                False,
                True,  # Activate RMSNorm
            )
            if res is None:
                res = hidden_states

            return normed_hidden_states, res
        elif SYSTEM == "rocm":
            # We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
            if residual is not None:
                hidden_states += residual
            residual = hidden_states

            out = torch.empty_like(hidden_states)
            _custom_ops.rms_norm(
                out,
                hidden_states,
                self.weight.data,
                self.variance_epsilon,
            )
            return out, residual
        else:
            raise ValueError(
                "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
            )