exllamav2.py 7.27 KB
Newer Older
xuxzh1's avatar
last  
xuxzh1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2

from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn

from loguru import logger

from text_generation_server.layers.exl2 import Exl2Weight
from text_generation_server.layers.gptq import GPTQWeight

try:
    from exllamav2_kernels import make_q_matrix, gemm_half_q_half
except ImportError:
    logger.error("exllamav2_kernels not installed.")
    raise

# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
none_tensor = torch.empty((1, 1), device="meta")


@dataclass
class _ExtraTensors:
    """Additional generated quantizer tensors."""

    q_group_map: Optional[torch.Tensor] = None
    q_invperm: Optional[torch.Tensor] = None
    q_perm: Optional[torch.Tensor] = None


def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda):
    """Matrix multiplication, returns x @ q4"""
    output_shape = x.shape[:-1] + (q4_width,)
    x = x.view(-1, x.shape[-1])
    output = torch.empty((x.shape[0], q4_width), dtype=torch.half, device=x.device)
    gemm_half_q_half(x, q_handle, output, force_cuda)
    return output.view(output_shape)


def make_group_map(q_groups: torch.Tensor, num_qrows: int):
    gr = q_groups.tolist()
    group_map = []
    num_groups = len(gr) // 2

    for i in range(num_groups):
        bits = gr[i * 2]
        if i < num_groups - 1:
            qrows = gr[i * 2 + 3] - gr[i * 2 + 1]
        else:
            qrows = num_qrows - gr[i * 2 + 1]
        rows = qrows * 32 // bits
        for j in range(rows):
            group_map += [i]
            group_map += [rows - j]

    return torch.tensor(group_map, dtype=torch.short, device=q_groups.device)


# Create Q matrix


def ext_make_q_matrix(
    w: Exl2Weight | GPTQWeight,
    extra: _ExtraTensors,
    temp_dq,
    key: Optional[str] = None,
):
    """
    Create Q matrix
    """
    # EXL2
    if isinstance(w, Exl2Weight):
        extra.q_group_map = make_group_map(w.q_groups, w.q_weight.shape[0])
        extra.q_perm = torch.argsort(w.q_invperm).short()

        return make_q_matrix(
            w.q_weight,
            extra.q_perm,
            w.q_invperm,
            w.q_scale,
            w.q_scale_max,
            w.q_groups,
            extra.q_group_map,
            none_tensor,
            none_tensor,
            none_tensor,
            temp_dq,
        )
    # GPTQ
    elif isinstance(w, GPTQWeight):
        if w.scales.dtype == torch.float:
            w.scales = w.scales.half()

        # GPTQ with g_idx (act_order)
        if w.g_idx is not None and not (w.g_idx == 0).all().item():
            extra.q_perm = torch.empty(
                (w.qweight.shape[0] * 8,),
                dtype=torch.short,
                device=w.qweight.device,
            )
            extra.q_invperm = torch.empty_like(extra.q_perm)
            # make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx.
            return make_q_matrix(
                w.qweight,
                extra.q_perm,
                extra.q_invperm,
                none_tensor,
                none_tensor,
                none_tensor,
                none_tensor,
                w.qzeros,
                w.scales,
                w.g_idx.cpu(),
                temp_dq,
            )
        # GPTQ without g_idx
        else:
            return make_q_matrix(
                w.qweight,
                none_tensor,
                none_tensor,
                none_tensor,
                none_tensor,
                none_tensor,
                none_tensor,
                w.qzeros,
                w.scales,
                none_tensor,
                temp_dq,
            )
    else:
        RuntimeError("Cannot create handle")


DEVICE = None
LAYERS = []


def set_device(device):
    global DEVICE
    DEVICE = device


def create_exllama_buffers(max_total_tokens: int):
    global LAYERS, DEVICE

    # No need to initialize scratch space if there are no layers
    # that use ExLLamav2.
    if len(LAYERS) == 0:
        return

    # Find the size of the scratch space.
    scratch_bytes = max(
        layer.scratch_space_fixed(max_input_len=max_total_tokens, max_batch_size=1)
        for layer in LAYERS
    )
    temp_dq = ExLlamaV2DeviceTensors(DEVICE, scratch_bytes)

    for layer in LAYERS:
        layer.post_init(temp_dq)


class QuantLinear(nn.Module):
    QUANT_TYPE = "exllamav2"

    """Linear layer implementation with per-group 4-bit quantization of the weights"""

    def __init__(
        self,
        weight: Exl2Weight | GPTQWeight,
        bias: torch.Tensor,
    ):
        super().__init__()

        self.q_handle = None
        self.q_tensors = weight
        self.extra_tensors = _ExtraTensors()

        if isinstance(weight, Exl2Weight):
            self.infeatures = weight.q_invperm.shape[0]
            self.outfeatures = weight.q_weight.shape[1]
        elif isinstance(weight, GPTQWeight):
            if weight.bits != 4:
                raise ValueError(
                    f"Exllamav2 kernel supports only bits=4, requested bits={weight.bits}. Something is wrong in the model initialization."
                )

            self.infeatures = weight.qweight.shape[0] // weight.bits * 32
            self.outfeatures = weight.qweight.shape[1]

        self.padding = -self.outfeatures % 32
        self.outfeatures = self.outfeatures + self.padding

        self.device = weight.device
        self.bias = bias if bias is not None else None

        global LAYERS
        LAYERS.append(self)

    def post_init(self, temp_dq):
        device = self.q_tensors.device
        assert device.type == "cuda"
        assert device.index is not None
        temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size())

        # We NEED to keep a pointer on Python side, otherwise the garbage collector will mess with us,
        # and `Memory access fault by GPU node-2` will EAT you.
        self.temp_dq = temp_dq
        self.q_handle = ext_make_q_matrix(self.q_tensors, self.extra_tensors, temp_dq)

    def forward(self, x, force_cuda=False):
        output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda)

        if self.bias is not None:
            output.add_(self.bias)
        return output

    def temp_dq_size(self):
        return self.infeatures * self.outfeatures * 2 + 128

    def temp_fwd_size(self, max_input_len, max_batch_size):
        return self.outfeatures * max_input_len * max_batch_size * 4 + 128

    def scratch_space_fixed(self, max_input_len, max_batch_size):
        return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size)


class ExLlamaV2DeviceTensors:

    device_idx: int
    scratch_bytes: int
    scratch_idx: int
    scratch: torch.tensor = None

    def __init__(self, device, scratch_bytes):
        self.device = device
        self.scratch_bytes = scratch_bytes

    def prepare(self):
        self.scratch = torch.empty(
            (self.scratch_bytes // 2,), dtype=torch.half, device=self.device
        )

    def get_scratch_slice(self, size_bytes):

        if self.scratch is None:
            self.prepare()

        size_bytes = ((size_bytes + 127) // 128) * 128
        size_half = size_bytes // 2
        scratch_slice = self.scratch.narrow(0, 0, size_half)
        return scratch_slice