"TECHNICAL_DETAILS.md" did not exist on "4453afe425f346cfc444ff3c128d6fb28af5fe71"
rocm.py 7.01 KB
Newer Older
xuxzh1's avatar
last  
xuxzh1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import torch
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.models.globals import FLASH_DECODING
from text_generation_server.layers.attention import Seqlen
from loguru import logger

major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
_PARTITION_SIZE = 512

use_triton = os.getenv("ROCM_USE_FLASH_ATTN_V2_TRITON", "").lower() in {"true", "1"}
ENGINE = "triton" if use_triton else "ck"

try:
    from vllm import _custom_ops
except Exception as e:
    raise ImportError(
        f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}"
    )


def reshape_and_cache(
    key: torch.Tensor,
    value: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    slots: torch.Tensor,
):
    if FLASH_DECODING:
        shape = key_cache.shape
        key_cache.view(-1, shape[-2], shape[-1])[slots] = key
        value_cache.view(-1, shape[-2], shape[-1])[slots] = value
    else:
        _custom_ops.reshape_and_cache(
            key, value, key_cache, value_cache, slots, "auto", 1.0
        )


def paged_attention(
    out: torch.Tensor,
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    kv_head_mapping: torch.Tensor,
    softmax_scale: float,
    block_tables: torch.Tensor,
    input_lengths: Seqlen,
    max_s: int,
):
    # Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
    # Copyright 2023 The vLLM team. All rights
    # reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #

    # value_cache => [num_blocks, num_heads, head_size, block_size]
    block_size = value_cache.shape[3]
    num_seqs, num_heads, head_size = query.shape
    max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
    input_lengths = input_lengths.input_lengths

    # NOTE(woosuk): We use a simple heuristic to decide whether to use
    # PagedAttention V1 or V2. If the number of partitions is 1, we use
    # V1 to avoid the overhead of reduction. Also, if the number of
    # sequences or heads is large, we use V1 since there is enough work
    # to parallelize.
    use_v1 = max_s <= 8192 and (max_num_partitions == 1 or num_seqs * num_heads > 512)
    if use_v1:
        _custom_ops.paged_attention_v1(
            out,
            query,
            key_cache,
            value_cache,
            # kv_head_mapping.int(),
            kv_head_mapping.shape[0],
            softmax_scale,
            block_tables,
            input_lengths,
            block_size,
            max_s,
            None,
            "auto",
            1.0,
        )
    else:
        # Run PagedAttention V2.
        assert _PARTITION_SIZE % block_size == 0
        tmp_output = torch.empty(
            size=(num_seqs, num_heads, max_num_partitions, head_size),
            dtype=out.dtype,
            device=out.device,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_heads, max_num_partitions),
            dtype=torch.float32,
            device=out.device,
        )
        max_logits = torch.empty_like(exp_sums)

        _custom_ops.paged_attention_v2(
            out,
            exp_sums,
            max_logits,
            tmp_output,
            query,
            key_cache,
            value_cache,
            # kv_head_mapping,
            kv_head_mapping.shape[0],
            softmax_scale,
            block_tables,
            input_lengths,
            block_size,
            max_s,
            None,
            "auto",
            1.0,
        )
    return out


if ENGINE != "triton":
    try:
        import flash_attn_2_cuda

        logger.info("ROCm: using Flash Attention 2 Composable Kernel implementation.")
    except ImportError as e:
        if major >= 8:
            architecture_suffix = f"-{SYSTEM}"
            raise ImportError(
                "Flash Attention V2 is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
            )
        elif is_sm75:
            raise ImportError(
                "Flash Attention is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                "or install flash attention with `cd server && make install install-flash-attention`"
            ) from e
        else:

            for idx in range(torch.cuda.device_count()):
                name = torch.cuda.get_device_name(idx)
                if "MI210" not in name and "MI250" not in name:
                    raise ImportError(
                        f"AMD GPU {torch.cuda.get_device_name(idx)} does not support flash-attention"
                    )
            raise ImportError(
                f"AMD GPU with ROCm capability {major} {minor} is not supported"
            ) from e


SUPPORTS_WINDOWING = False
if ENGINE == "ck":

    def attention(
        q,
        k,
        v,
        out,
        cu_seqlens,
        max_s,
        softmax_scale,
        window_size_left=-1,
        causal=True,
    ):
        if window_size_left <= 0 and window_size_left != -1:
            raise ValueError("`window_size_left` must be > 0 or -1")

        # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
        return flash_attn_2_cuda.varlen_fwd(
            q,
            k,
            v,
            out,
            cu_seqlens,
            cu_seqlens,
            max_s,
            max_s,
            0.0,
            softmax_scale,
            False,
            causal,
            False,
            None,
        )

elif ENGINE == "triton":
    from .flash_attn_triton import triton_attention

    def attention(
        q,
        k,
        v,
        out,
        cu_seqlens,
        max_s,
        softmax_scale,
        window_size_left=-1,
        causal=True,
    ):
        # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
        output, _ = triton_attention(
            q,
            k,
            v,
            out,
            cu_seqlens,
            cu_seqlens,
            max_s,
            max_s,
            causal,
            softmax_scale,
        )
        return output

else:
    raise RuntimeError(f"Unknown attention engine {ENGINE}")