idefics.py 2.82 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
import torch.distributed

from typing import List, Optional, Tuple

from transformers import (
    AutoTokenizer,
    AutoConfig,
    AutoProcessor,
)

from text_generation_server.models.custom_modeling.idefics_config import IdeficsConfig
from text_generation_server.models.custom_modeling.idefics_processing import (
    IdeficsProcessor,
)
from transformers import LlamaTokenizerFast
from text_generation_server.models.custom_modeling.idefics_modeling import (
    IdeficsForVisionText2Text,
)
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)


class IDEFICSSharded(IdeficsCausalLM):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
    ):
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            # 9b seems to work correctly enough in float16, but 80b seems
            # to be really saturating for f16.
            dtype = torch.bfloat16 if dtype is None else dtype
        else:
            device = torch.device("cpu")
Wang, Yi's avatar
Wang, Yi committed
45
            dtype = torch.float32 if dtype is None else dtype
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        self.device, self.dtype = device, dtype

        config = IdeficsConfig.from_pretrained(
            model_id,
            revision=revision,
            trust_remote_code=trust_remote_code,
        )
        config.quantize = quantize
        config.vision_config.quantize = quantize

        tokenizer = LlamaTokenizerFast.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )
        self.processor = IdeficsProcessor.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )

        torch.distributed.barrier(group=self.process_group)
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(
            filenames,
            device=device,
            dtype=dtype,
            process_group=self.process_group,
        )

        model = IdeficsForVisionText2Text(config, weights)

        torch.distributed.barrier(group=self.process_group)
        super(IdeficsCausalLM, self).__init__(
            model=model,
            tokenizer=tokenizer,
            requires_padding=True,
            dtype=dtype,
            device=device,
            rank=rank,
            world_size=world_size,
        )