rocm.py 8.73 KB
Newer Older
1
import os
2
from typing import Optional
3
import torch
4
from text_generation_server.layers.attention.kv_cache import KVCache, KVScales
5
from text_generation_server.utils.import_utils import SYSTEM
Nicolas Patry's avatar
Nicolas Patry committed
6
from text_generation_server.layers.attention import Seqlen
7
from text_generation_server.utils.log import log_master
8
9
10
11
from loguru import logger

major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
12
13
14

_PARTITION_SIZE_V1V2 = 512
_PARTITION_SIZE_CUSTOM = 256
15
16
17
18

use_triton = os.getenv("ROCM_USE_FLASH_ATTN_V2_TRITON", "").lower() in {"true", "1"}
ENGINE = "triton" if use_triton else "ck"

19
20
21
use_rocm_custom_paged_attn = os.getenv("ROCM_USE_CUSTOM_PAGED_ATTN", "1") != "0"
try:
    if use_rocm_custom_paged_attn:
xuxzh1's avatar
xuxzh1 committed
22
23
        #from vllm._custom_C import paged_attention_custom
        from vllm import _custom_ops
24
25
26
27
28
29
30
except ImportError as e:
    log_master(
        logger.info,
        f"Custom Paged Attention not available. Complete error: {e}",
    )
    use_rocm_custom_paged_attn = False

31
32
33

def paged_attention(
    query: torch.Tensor,
34
    kv_cache: KVCache,
35
36
37
    kv_head_mapping: torch.Tensor,
    softmax_scale: float,
    block_tables: torch.Tensor,
38
    seqlen: Seqlen,
39
    max_s: int,
40
41
    *,
    kv_scales: KVScales,
42
    softcap: Optional[float] = None,
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
):
    # Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
    # Copyright 2023 The vLLM team. All rights
    # reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #

61
62
63
    if softcap is not None:
        raise RuntimeError("Paged attention doesn't support softcapping")

64
    # value_cache => [num_blocks, num_heads, head_size, block_size]
65
    block_size = kv_cache.value.shape[3]
66
    num_seqs, num_heads, head_size = query.shape
67

68
    num_kv_heads = kv_cache.key.shape[1]
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    gqa_ratio = num_heads // num_kv_heads
    use_custom = (
        use_rocm_custom_paged_attn
        and (query.dtype == torch.half or query.dtype == torch.bfloat16)
        and (head_size == 128 or head_size == 64)
        and (block_size == 16 or block_size == 32)
        and (gqa_ratio >= 1 and gqa_ratio <= 16)
        and max_s <= 32768
    )

    if not use_custom:
        _PARTITION_SIZE = _PARTITION_SIZE_V1V2
    else:
        _PARTITION_SIZE = _PARTITION_SIZE_CUSTOM
xuxzh1's avatar
xuxzh1 committed
83
84
    _PARTITION_SIZE = 512
    
85
    max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
86
    input_lengths = seqlen.input_lengths + seqlen.cache_lengths
87

88
89
    out = torch.empty_like(query)

90
91
92
93
94
    # NOTE(woosuk): We use a simple heuristic to decide whether to use
    # PagedAttention V1 or V2. If the number of partitions is 1, we use
    # V1 to avoid the overhead of reduction. Also, if the number of
    # sequences or heads is large, we use V1 since there is enough work
    # to parallelize.
95
    import vllm._custom_ops as ops
96

97
98
99
100
101
    use_v1 = (
        max_s <= 8192
        and (max_num_partitions == 1 or num_seqs * num_heads > 512)
        and not use_custom
    )
102
103
104
105
    if use_v1:
        ops.paged_attention_v1(
            out,
            query,
106
107
            kv_cache.key,
            kv_cache.value,
xuxzh1's avatar
xuxzh1 committed
108
109
            #kv_head_mapping,
            kv_head_mapping.shape[0],
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            softmax_scale,
            block_tables,
            input_lengths,
            block_size,
            max_s,
            None,
            "auto",
            1.0,
        )
    else:
        # Run PagedAttention V2.
        assert _PARTITION_SIZE % block_size == 0
        tmp_output = torch.empty(
            size=(num_seqs, num_heads, max_num_partitions, head_size),
            dtype=out.dtype,
            device=out.device,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_heads, max_num_partitions),
            dtype=torch.float32,
            device=out.device,
        )
        max_logits = torch.empty_like(exp_sums)

xuxzh1's avatar
xuxzh1 committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        #if not use_custom:
        ops.paged_attention_v2(
            out,
            exp_sums,
            max_logits,
            tmp_output,
            query,
            kv_cache.key,
            kv_cache.value,
            #kv_head_mapping,
            kv_head_mapping.shape[0],
            softmax_scale,
            block_tables,
            input_lengths,
            block_size,
            max_s,
            None,
            "auto",
            1.0,
        )
        # else:
        #     paged_attention_custom(
        #         out,
        #         exp_sums,
        #         max_logits,
        #         tmp_output,
        #         query,
        #         kv_cache.key,
        #         kv_cache.value,
        #         num_kv_heads,
        #         softmax_scale,
        #         block_tables,
        #         input_lengths,
        #         block_size,
        #         max_s,
        #         None,
        #         "auto",
        #     )
172

173
    return out
174
175
176
177
178
179


if ENGINE != "triton":
    try:
        import flash_attn_2_cuda

180
181
182
183
        log_master(
            logger.info,
            "ROCm: using Flash Attention 2 Composable Kernel implementation.",
        )
Nicolas Patry's avatar
Nicolas Patry committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    except ImportError as e:
        if major >= 8:
            architecture_suffix = f"-{SYSTEM}"
            raise ImportError(
                "Flash Attention V2 is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
            )
        elif is_sm75:
            raise ImportError(
                "Flash Attention is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                "or install flash attention with `cd server && make install install-flash-attention`"
            ) from e
        else:
            for idx in range(torch.cuda.device_count()):
                name = torch.cuda.get_device_name(idx)
                if "MI210" not in name and "MI250" not in name:
                    raise ImportError(
                        f"AMD GPU {torch.cuda.get_device_name(idx)} does not support flash-attention"
                    )
            raise ImportError(
                f"AMD GPU with ROCm capability {major} {minor} is not supported"
            ) from e


SUPPORTS_WINDOWING = False
211
212
213
214
215
216
217
218


def attention(
    *,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    kv_cache: KVCache,
219
    kv_scales: KVScales,
220
221
222
223
224
225
226
227
    seqlen: Seqlen,
    block_tables: torch.Tensor,
    softmax_scale: float,
    window_size_left: int = -1,
    causal: bool = True,
    softcap: Optional[float] = None,
):
    if ENGINE == "ck":
228
229
        if window_size_left <= 0 and window_size_left != -1:
            raise ValueError("`window_size_left` must be > 0 or -1")
230

231
232
233
234
        out = torch.empty_like(query)

        if softcap is None:
            softcap = 0.0
235

236
        # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
237
        return flash_attn_2_cuda.varlen_fwd(
238
239
240
            query,
            key,
            value,
241
            out,
242
243
244
245
246
247
248
249
            seqlen.cu_seqlen_q,
            seqlen.cu_seqlen_q,
            None,
            None,
            None,
            None,
            seqlen.max_q,
            seqlen.max_k,
250
251
252
253
            0.0,
            softmax_scale,
            False,
            causal,
254
255
256
            window_size_left,
            0,
            softcap,
257
258
            False,
            None,
259
        )[0]
260

261
262
263
    elif ENGINE == "triton":
        from .flash_attn_triton import triton_attention

264
265
266
        if softcap is not None:
            raise NotImplementedError("softcap is only available with CK flash attn")

267
        out = torch.empty_like(query)
268

269
        # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
270
        output, _ = triton_attention(
271
272
273
            query,
            key,
            value,
274
            out,
275
276
277
278
            seqlen.cu_seqlen_q,
            seqlen.cu_seqlen_q,
            seqlen.max_q,
            seqlen.max_k,
279
280
281
282
283
            causal,
            softmax_scale,
        )
        return output

284
285
286
    else:
        raise RuntimeError(f"Unknown attention engine {ENGINE}")

287
288
289
290
291
292

__all__ = [
    "SUPPORTS_WINDOWING",
    "attention",
    "paged_attention",
]