exllamav2.py 6.94 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2

from logging import getLogger

import torch
import torch.nn as nn
import math

logger = getLogger(__name__)

try:
    from exllamav2_kernels import make_q_matrix, gemm_half_q_half
except ImportError:
    logger.error('exllamav2_kernels not installed.')
    raise

# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
none_tensor = torch.empty((1, 1), device="meta")

def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda):
    """Matrix multiplication, returns x @ q4"""
    output_shape = x.shape[:-1] + (q4_width,)
    x = x.view(-1, x.shape[-1])
    output = torch.empty((x.shape[0], q4_width), dtype = torch.half, device = x.device)
    gemm_half_q_half(x, q_handle, output, force_cuda)
    return output.view(output_shape)

def ext_make_q_matrix(w: dict, temp_dq, key: str = None):
    """
    Create Q matrix 
    """
    # EXL2
    # won't work as the moment because the tensors are not the same. 
    if "q_weight" in w:
        w["q_scale_max"] /= 256
        w["q_perm"] = w["q_perm"].short()
        w["q_invperm"] = w["q_invperm"].short()
        return make_q_matrix(w["q_weight"],
                                w["q_perm"],
                                w["q_invperm"],
                                w["q_scale"],
                                w["q_scale_max"],
                                w["q_groups"],
                                none_tensor,
                                none_tensor,
                                none_tensor,
                                temp_dq)
    # GPTQ
    elif "qweight" in w:
        if w["scales"].dtype == torch.float:
            w["scales"] = w["scales"].half()

        # GPTQ with g_idx (act_order)
        if w.get("g_idx", None) is not None and not (w["g_idx"] == 0).all().item():
            w["q_perm"] = torch.empty((w["qweight"].shape[0] * 8,), dtype = torch.short, device = w["qweight"].device)
            w["q_invperm"] = torch.empty_like(w["q_perm"])
            # make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx.
            return make_q_matrix(w["qweight"],
                                 w["q_perm"],
                                 w["q_invperm"],
                                 none_tensor,
                                 none_tensor,
                                 none_tensor,
                                 w["qzeros"],
                                 w["scales"],
                                 w["g_idx"].cpu(),
                                 temp_dq)
        # GPTQ without g_idx
        else:
            return make_q_matrix(w["qweight"],
                                none_tensor,
                                none_tensor,
                                none_tensor,
                                none_tensor,
                                none_tensor,
                                w["qzeros"],
                                w["scales"],
                                none_tensor,
                                temp_dq)

DEVICE = None
FIXED_BYTES = 0
LAYERS = []


def set_device(device):
    global DEVICE
    DEVICE = device


def create_exllama_buffers():
    global FIXED_BYTES, LAYERS, DEVICE
    temp_dq = ExLlamaV2DeviceTensors(DEVICE, FIXED_BYTES)

    for layer in LAYERS:
        layer.post_init(temp_dq)


class QuantLinear(nn.Module):
    QUANT_TYPE = "exllamav2"

    """Linear layer implementation with per-group 4-bit quantization of the weights"""

    # def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs):
    def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize):
        super().__init__()
        if bits != 4:
            raise ValueError(
                f"Exllamav2 kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization.")
        self.q_handle = None
        self.q_tensors = None
        self.bits = bits
        self.maxq = 2 ** self.bits - 1
        self.infeatures = qweight.shape[0] // self.bits * 32
        self.outfeatures = qweight.shape[1]
        self.padding = - self.outfeatures % 32
        self.outfeatures = self.outfeatures + self.padding

        self.device = qweight.device
        self.qweight = qweight
        self.qzeros = qzeros
        self.scales = scales
        self.g_idx = g_idx
        self.bias = bias if bias is not None else None
        self.group_size = groupsize

        infeatures = self.infeatures
        outfeatures = self.outfeatures
        assert qweight.shape == (infeatures // 32 * self.bits, outfeatures)
        assert infeatures % self.group_size == 0
        assert qzeros.shape == (infeatures // self.group_size, outfeatures // 32 * self.bits)
        assert scales.shape == (infeatures // self.group_size, outfeatures)
        assert g_idx.shape == (infeatures, ), f"{g_idx.shape}, {infeatures}"

        global FIXED_BYTES, LAYERS
        FIXED_BYTES = max(FIXED_BYTES, self.scratch_space_fixed())
        LAYERS.append(self)

    def post_init(self, temp_dq):
        assert self.qweight.device.type == "cuda"
        assert self.qweight.device.index is not None
        self.q_tensors = {
            "qweight":self.qweight,
            "qzeros":self.qzeros,
            "scales":self.scales,
            "g_idx":self.g_idx
        }
        temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size())
        self.q_handle = ext_make_q_matrix(
            self.q_tensors, temp_dq
        )
    
    def forward(self, x, force_cuda = False):
        output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda)

        if self.bias is not None:
            output.add_(self.bias)
        return output
    
    def temp_dq_size(self):
        return self.infeatures * self.outfeatures * 2 + 128
    
    def temp_fwd_size(self, max_input_len, max_batch_size):
        return self.outfeatures * max_input_len * max_batch_size * 4 + 128
    
    def scratch_space_fixed(self, max_input_len=4096, max_batch_size=16):
        return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size)
               
    
class ExLlamaV2DeviceTensors:

    device_idx: int
    scratch_bytes: int
    scratch_idx: int
    scratch: torch.tensor = None

    def __init__(self, device, scratch_bytes):
        self.device = device
        self.scratch_bytes = scratch_bytes
    
    def prepare(self):
        self.scratch = torch.empty((self.scratch_bytes // 2,), dtype = torch.half, device = self.device)

    def get_scratch_slice(self, size_bytes):

        if self.scratch is None: self.prepare()

        size_bytes = ((size_bytes + 127) // 128) * 128
        size_half = size_bytes // 2
        scratch_slice = self.scratch.narrow(0, 0, size_half)
        return scratch_slice