rocm.py 8.62 KB
Newer Older
1
import os
2
from typing import Optional
3
import torch
4
from text_generation_server.layers.attention.kv_cache import KVCache, KVScales
5
from text_generation_server.utils.import_utils import SYSTEM
Nicolas Patry's avatar
Nicolas Patry committed
6
from text_generation_server.layers.attention import Seqlen
7
from text_generation_server.utils.log import log_master
8
9
10
11
from loguru import logger

major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
12
13
14

_PARTITION_SIZE_V1V2 = 512
_PARTITION_SIZE_CUSTOM = 256
15
16
17
18

use_triton = os.getenv("ROCM_USE_FLASH_ATTN_V2_TRITON", "").lower() in {"true", "1"}
ENGINE = "triton" if use_triton else "ck"

19
20
21
22
23
24
25
26
27
28
29
use_rocm_custom_paged_attn = os.getenv("ROCM_USE_CUSTOM_PAGED_ATTN", "1") != "0"
try:
    if use_rocm_custom_paged_attn:
        from vllm._custom_C import paged_attention_custom
except ImportError as e:
    log_master(
        logger.info,
        f"Custom Paged Attention not available. Complete error: {e}",
    )
    use_rocm_custom_paged_attn = False

30
31
32

def paged_attention(
    query: torch.Tensor,
33
    kv_cache: KVCache,
34
35
36
    kv_head_mapping: torch.Tensor,
    softmax_scale: float,
    block_tables: torch.Tensor,
37
    seqlen: Seqlen,
38
    max_s: int,
39
40
    *,
    kv_scales: KVScales,
41
    softcap: Optional[float] = None,
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
):
    # Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
    # Copyright 2023 The vLLM team. All rights
    # reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #

60
61
62
    if softcap is not None:
        raise RuntimeError("Paged attention doesn't support softcapping")

63
    # value_cache => [num_blocks, num_heads, head_size, block_size]
64
    block_size = kv_cache.value.shape[3]
65
    num_seqs, num_heads, head_size = query.shape
66

67
    num_kv_heads = kv_cache.key.shape[1]
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    gqa_ratio = num_heads // num_kv_heads
    use_custom = (
        use_rocm_custom_paged_attn
        and (query.dtype == torch.half or query.dtype == torch.bfloat16)
        and (head_size == 128 or head_size == 64)
        and (block_size == 16 or block_size == 32)
        and (gqa_ratio >= 1 and gqa_ratio <= 16)
        and max_s <= 32768
    )

    if not use_custom:
        _PARTITION_SIZE = _PARTITION_SIZE_V1V2
    else:
        _PARTITION_SIZE = _PARTITION_SIZE_CUSTOM

83
    max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
84
    input_lengths = seqlen.input_lengths + seqlen.cache_lengths
85

86
87
    out = torch.empty_like(query)

88
89
90
91
92
    # NOTE(woosuk): We use a simple heuristic to decide whether to use
    # PagedAttention V1 or V2. If the number of partitions is 1, we use
    # V1 to avoid the overhead of reduction. Also, if the number of
    # sequences or heads is large, we use V1 since there is enough work
    # to parallelize.
93
    import vllm._custom_ops as ops
94

95
96
97
98
99
    use_v1 = (
        max_s <= 8192
        and (max_num_partitions == 1 or num_seqs * num_heads > 512)
        and not use_custom
    )
100
101
102
103
    if use_v1:
        ops.paged_attention_v1(
            out,
            query,
104
105
            kv_cache.key,
            kv_cache.value,
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
            kv_head_mapping,
            softmax_scale,
            block_tables,
            input_lengths,
            block_size,
            max_s,
            None,
            "auto",
            1.0,
        )
    else:
        # Run PagedAttention V2.
        assert _PARTITION_SIZE % block_size == 0
        tmp_output = torch.empty(
            size=(num_seqs, num_heads, max_num_partitions, head_size),
            dtype=out.dtype,
            device=out.device,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_heads, max_num_partitions),
            dtype=torch.float32,
            device=out.device,
        )
        max_logits = torch.empty_like(exp_sums)

131
132
133
134
135
136
137
        if not use_custom:
            ops.paged_attention_v2(
                out,
                exp_sums,
                max_logits,
                tmp_output,
                query,
138
139
                kv_cache.key,
                kv_cache.value,
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
                kv_head_mapping,
                softmax_scale,
                block_tables,
                input_lengths,
                block_size,
                max_s,
                None,
                "auto",
                1.0,
            )
        else:
            paged_attention_custom(
                out,
                exp_sums,
                max_logits,
                tmp_output,
                query,
157
158
                kv_cache.key,
                kv_cache.value,
159
160
161
162
163
164
165
166
167
168
                num_kv_heads,
                softmax_scale,
                block_tables,
                input_lengths,
                block_size,
                max_s,
                None,
                "auto",
            )

169
    return out
170
171
172
173
174
175


if ENGINE != "triton":
    try:
        import flash_attn_2_cuda

176
177
178
179
        log_master(
            logger.info,
            "ROCm: using Flash Attention 2 Composable Kernel implementation.",
        )
Nicolas Patry's avatar
Nicolas Patry committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    except ImportError as e:
        if major >= 8:
            architecture_suffix = f"-{SYSTEM}"
            raise ImportError(
                "Flash Attention V2 is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
            )
        elif is_sm75:
            raise ImportError(
                "Flash Attention is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                "or install flash attention with `cd server && make install install-flash-attention`"
            ) from e
        else:
            for idx in range(torch.cuda.device_count()):
                name = torch.cuda.get_device_name(idx)
                if "MI210" not in name and "MI250" not in name:
                    raise ImportError(
                        f"AMD GPU {torch.cuda.get_device_name(idx)} does not support flash-attention"
                    )
            raise ImportError(
                f"AMD GPU with ROCm capability {major} {minor} is not supported"
            ) from e


SUPPORTS_WINDOWING = False
207
208
209
210
211
212
213
214


def attention(
    *,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    kv_cache: KVCache,
215
    kv_scales: KVScales,
216
217
218
219
220
221
222
223
    seqlen: Seqlen,
    block_tables: torch.Tensor,
    softmax_scale: float,
    window_size_left: int = -1,
    causal: bool = True,
    softcap: Optional[float] = None,
):
    if ENGINE == "ck":
224
225
        if window_size_left <= 0 and window_size_left != -1:
            raise ValueError("`window_size_left` must be > 0 or -1")
226

227
228
229
230
        out = torch.empty_like(query)

        if softcap is None:
            softcap = 0.0
231

232
        # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
233
        return flash_attn_2_cuda.varlen_fwd(
234
235
236
            query,
            key,
            value,
237
            out,
238
239
240
241
242
243
244
245
            seqlen.cu_seqlen_q,
            seqlen.cu_seqlen_q,
            None,
            None,
            None,
            None,
            seqlen.max_q,
            seqlen.max_k,
246
247
248
249
            0.0,
            softmax_scale,
            False,
            causal,
250
251
252
            window_size_left,
            0,
            softcap,
253
254
            False,
            None,
255
        )[0]
256

257
258
259
    elif ENGINE == "triton":
        from .flash_attn_triton import triton_attention

260
261
262
        if softcap is not None:
            raise NotImplementedError("softcap is only available with CK flash attn")

263
        out = torch.empty_like(query)
264

265
        # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
266
        output, _ = triton_attention(
267
268
269
            query,
            key,
            value,
270
            out,
271
272
273
274
            seqlen.cu_seqlen_q,
            seqlen.cu_seqlen_q,
            seqlen.max_q,
            seqlen.max_k,
275
276
277
278
279
            causal,
            softmax_scale,
        )
        return output

280
281
282
    else:
        raise RuntimeError(f"Unknown attention engine {ENGINE}")

283
284
285
286
287
288

__all__ = [
    "SUPPORTS_WINDOWING",
    "attention",
    "paged_attention",
]