flash_santacoder.py 15.4 KB
Newer Older
1
2
3
4
5
import torch
import torch.distributed

from accelerate import init_empty_weights
from opentelemetry import trace
6
from safetensors import safe_open
7
from pathlib import Path
8
from transformers import AutoTokenizer, GPT2Config
9
10
11
12
from typing import Optional, List

from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
13
    FlashSantacoderForCausalLM,
14
15
16
    TensorParallelRowLinear,
    TensorParallelColumnLinear,
    TensorParallelEmbedding,
17
18
)
from text_generation_server.utils import (
19
    initialize_torch_distributed,
20
21
22
23
24
25
26
27
28
29
    weight_files,
    download_weights,
    weight_hub_files,
    LocalEntryNotFoundError,
)

tracer = trace.get_tracer(__name__)


class FlashSantacoder(FlashCausalLM):
30
31
32
33
34
35
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
    ):
36
37
        if torch.cuda.is_available():
            device = torch.device("cuda")
38
            dtype = torch.float16
39
40
41
42
        else:
            raise NotImplementedError("FlashSantacoder is only available on GPU")

        tokenizer = AutoTokenizer.from_pretrained(
43
            model_id, revision=revision, padding_side="left", truncation_side="left"
44
45
        )

46
        config = GPT2Config.from_pretrained(
47
48
            model_id,
            revision=revision,
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        )

        # We do not use from_pretrained as we modified the model internal module layout
        try:
            filenames = weight_files(model_id, revision, ".bin")
        # Local files not found
        except LocalEntryNotFoundError:
            hub_files = weight_hub_files(model_id, revision, ".bin")
            filenames = download_weights(hub_files, model_id, revision)

        with init_empty_weights():
            model = FlashSantacoderForCausalLM(config)

        self.load_weights(
63
64
65
66
67
68
            model,
            filenames,
            quantize,
            device,
            dtype,
            config.architectures[0].startswith("GPT2"),
69
        )
70
        self.model = model.eval().to(device)
71
72

        super(FlashCausalLM, self).__init__(
73
74
75
76
77
            tokenizer=tokenizer,
            requires_padding=False,
            dtype=dtype,
            device=device,
            decode_buffer=1,
78
79
80
81
        )

    @staticmethod
    def load_weights(
82
83
        model: FlashSantacoderForCausalLM,
        filenames: List[Path],
84
        quantize: bool,
85
86
        device: torch.device,
        dtype: torch.dtype,
87
        transpose: bool,
88
89
90
91
    ):
        for filename in filenames:
            state_dict = torch.load(filename, map_location="cpu")
            for key, value in state_dict.items():
92
                value = value.to(device if quantize is None else "cpu").to(dtype)
93

94
95
96
97
                layer_name = ".".join(key.split(".")[:4])

                # Fused qkv
                if "q_attn.weight" in key or "kv_attn.weight" in key:
98
                    final_key = layer_name + ".c_attn.weight"
99
                elif "q_attn.bias" in key or "kv_attn.bias" in key:
100
                    final_key = layer_name + ".c_attn.bias"
101
102
103
104
105
106
107
108
109
110
111
112
113

                else:
                    final_key = key

                module_name, param_name = final_key.rsplit(".", 1)
                module = model.get_submodule(module_name)

                try:
                    current_parameter_tensor = module._parameters[param_name]
                except KeyError:
                    current_parameter_tensor = None

                if current_parameter_tensor is not None:
114
                    if transpose and (
115
116
117
118
                        "c_fc.weight" in key
                        or "c_proj.weight" in key
                        or "q_attn.weight" in key
                        or "kv_attn.weight" in key
119
                        or "c_attn.weight" in key
120
                    ):
121
122
123
124
125
                        # Tranpose as we use nn.Linear instead of Conv1D
                        value = value.T

                    if current_parameter_tensor.device == torch.device("meta"):
                        # Init qkv
126
                        if "c_attn.weight" in final_key:
127
                            module._parameters[param_name] = value.new_empty(
128
129
130
131
132
                                (
                                    model.transformer.head_size
                                    * (model.transformer.num_heads + 2),
                                    value.shape[1],
                                )
133
                            )
134
                        elif "c_attn.bias" in final_key:
135
                            module._parameters[param_name] = value.new_empty(
136
137
138
139
                                (
                                    model.transformer.head_size
                                    * (model.transformer.num_heads + 2)
                                )
140
141
142
143
144
145
146
147
148
                            )

                    # Copy to correct slice
                    if "q_attn.weight" in key:
                        module._parameters[param_name][: value.shape[0]] = value
                    elif "q_attn.bias" in key:
                        module._parameters[param_name][: value.shape[0]] = value
                    elif "kv_attn.weight" in key:
                        module._parameters[param_name][
149
                            model.transformer.head_size * model.transformer.num_heads :
150
151
152
                        ] = value
                    elif "kv_attn.bias" in key:
                        module._parameters[param_name][
153
                            model.transformer.head_size * model.transformer.num_heads :
154
155
156
157
158
159
160
161
162
163
                        ] = value
                    else:
                        if current_parameter_tensor.shape != value.shape:
                            raise ValueError(
                                f"Name {final_key} -- Current {current_parameter_tensor.shape} and got {value.shape}"
                            )
                        module._parameters[param_name] = value
                else:
                    module._buffers[param_name] = value

164
165
                del value

166
        torch.cuda.empty_cache()
167
        model.post_load_weights(quantize)
168
169
170
171

    def decode(self, generated_ids: List[int]) -> str:
        # Do not skip special tokens as they are used for custom parsing rules of the generated text
        return self.tokenizer.decode(
172
            generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
173
        )
174
175
176
177


class FlashSantacoderSharded(FlashSantacoder):
    def __init__(
178
179
180
181
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
182
    ):
183
        self.process_group, rank, world_size = initialize_torch_distributed()
184
        if torch.cuda.is_available():
185
            device = torch.device(f"cuda:{rank}")
186
            dtype = torch.float16
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        else:
            raise NotImplementedError("FlashSantacoderSharded is only available on GPU")

        tokenizer = AutoTokenizer.from_pretrained(
            model_id, revision=revision, padding_side="left", truncation_side="left"
        )

        config = GPT2Config.from_pretrained(
            model_id,
            revision=revision,
        )

        torch.distributed.barrier(group=self.process_group)
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")

        with init_empty_weights():
            model = FlashSantacoderForCausalLM(config, self.process_group)

        torch.distributed.barrier(group=self.process_group)
        self.load_weights(
            model,
            filenames,
209
            quantize=quantize,
210
211
            device=device,
            dtype=dtype,
212
213
            rank=rank,
            world_size=world_size,
214
215
            transpose=config.architectures[0].startswith("GPT2"),
        )
216
        self.model = model.eval().to(device)
217
218
219
        torch.distributed.barrier(group=self.process_group)
        super(FlashCausalLM, self).__init__(
            tokenizer=tokenizer,
220
221
            requires_padding=False,
            dtype=dtype,
222
            device=device,
223
224
            rank=rank,
            world_size=world_size,
225
            decode_buffer=1,
226
227
228
229
230
231
        )

    @staticmethod
    def load_weights(
        model,
        filenames: List[str],
232
        quantize: Optional[str],
233
234
235
236
237
238
239
        device: torch.device,
        dtype: torch.dtype,
        rank: int,
        world_size: int,
        transpose: bool,
    ):
        for file in filenames:
240
            with safe_open(
241
                file, framework="pt", device=str(device) if quantize is None else "cpu"
242
            ) as f:
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
                for key in f.keys():
                    slice_ = f.get_slice(key)

                    layer_name = ".".join(key.split(".")[:4])

                    # Fused qkv
                    if "q_attn.weight" in key or "kv_attn.weight" in key:
                        final_key = layer_name + ".c_attn.weight"
                    elif "q_attn.bias" in key or "kv_attn.bias" in key:
                        final_key = layer_name + ".c_attn.bias"
                    else:
                        final_key = key

                    module_name, param_name = final_key.rsplit(".", 1)
                    module = model.get_submodule(module_name)

                    if isinstance(module, TensorParallelColumnLinear):
                        dim = 1 if transpose and "weight" in param_name else 0
                        size = slice_.get_shape()[dim]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = (
                            slice_[start:stop] if dim == 0 else slice_[:, start:stop]
                        )
                    elif isinstance(module, TensorParallelRowLinear):
                        if param_name == "weight":
                            dim = 0 if transpose else 1
                            size = slice_.get_shape()[dim]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = (
                                slice_[start:stop]
                                if dim == 0
                                else slice_[:, start:stop]
                            )
                        else:
                            tensor = slice_[:]
                            # XXX: Hack for Rowlinear to add the bias only once.
                            if rank != 0:
                                tensor = torch.zeros_like(tensor)
                    elif isinstance(module, TensorParallelEmbedding):
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    elif key == "lm_head.weight" and model.transformer.tp_embeddings:
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    else:
                        try:
                            tensor = slice_[:]
                        except:
                            tensor = f.get_tensor(key)

                    tensor = tensor.contiguous().to(dtype)

                    try:
                        current_parameter_tensor = module._parameters[param_name]
                    except KeyError:
                        current_parameter_tensor = None

                    if current_parameter_tensor is not None:
                        if transpose and (
                            "c_fc.weight" in key
                            or "c_proj.weight" in key
                            or "q_attn.weight" in key
                            or "kv_attn.weight" in key
                            or "c_attn.weight" in key
                        ):
                            # Tranpose as we use nn.Linear instead of Conv1D
                            tensor = tensor.T

                        if current_parameter_tensor.device == torch.device("meta"):
                            # Init qkv
                            if "c_attn.weight" in final_key:
                                module._parameters[param_name] = tensor.new_empty(
                                    (
                                        model.transformer.head_size
                                        * (model.transformer.num_heads + 2),
                                        tensor.shape[1],
                                    )
                                )
                            elif "c_attn.bias" in final_key:
                                module._parameters[param_name] = tensor.new_empty(
                                    (
                                        model.transformer.head_size
                                        * (model.transformer.num_heads + 2)
                                    )
                                )

                        # Copy to correct slice
                        if "q_attn" in key:
                            size = tensor.shape[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = tensor[start:stop]
                            module._parameters[param_name][: tensor.shape[0]] = tensor
                        elif "kv_attn.weight" in key:
                            module._parameters[param_name][
                                model.transformer.head_size
                                * model.transformer.num_heads :
                            ] = tensor
                        elif "kv_attn.bias" in key:
                            module._parameters[param_name][
                                model.transformer.head_size
                                * model.transformer.num_heads :
                            ] = tensor
                        elif "c_attn" in key:
                            # Slice q_tensor by shard
                            q_tensor = tensor[: -2 * model.transformer.head_size]
                            block_size = q_tensor.shape[0] // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            q_tensor = q_tensor[start:stop]

                            module._parameters[param_name][
                                : q_tensor.shape[0]
                            ] = q_tensor

                            # Kv tensor is copied for every shard
                            kv_tensor = tensor[-2 * model.transformer.head_size :]
                            module._parameters[param_name][
                                q_tensor.shape[0] :
                            ] = kv_tensor
                        else:
                            if current_parameter_tensor.shape != tensor.shape:
                                raise ValueError(
                                    f"Name {key} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
                                )

                            module._parameters[param_name] = tensor
                    else:
                        module._buffers[param_name] = tensor
383

384
        model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
385
        torch.cuda.empty_cache()
386
        model.post_load_weights(quantize)