tokens.py 22.3 KB
Newer Older
1
import re
2
from typing import List, Optional, Tuple
3

drbh's avatar
drbh committed
4
import math
Nicolas Patry's avatar
Nicolas Patry committed
5
import torch
6
from text_generation_server.pb import generate_pb2
drbh's avatar
drbh committed
7
from text_generation_server.pb.generate_pb2 import FinishReason, GrammarType
8
from text_generation_server.utils.logits_process import (
9
    FrequencyPenaltyLogitsProcessor,
drbh's avatar
drbh committed
10
    GrammarLogitProcessor,
Nicolas Patry's avatar
Nicolas Patry committed
11
    HeterogeneousProcessorWrapper,
12
    HeterogeneousRepetitionPenaltyLogitsProcessor,
13
    HeterogeneousFrequencyPenaltyLogitsProcessor,
14
15
16
17
    HeterogeneousTemperatureLogitsWarper,
    HeterogeneousTopKLogitsWarper,
    HeterogeneousTopPLogitsWarper,
    HeterogeneousTypicalLogitsWarper,
drbh's avatar
drbh committed
18
    HeterogeneousGrammarLogitProcessor,
Nicolas Patry's avatar
Nicolas Patry committed
19
    static_warper,
20
)
Nicolas Patry's avatar
Nicolas Patry committed
21
22
from text_generation_server.utils.watermark import WatermarkLogitsProcessor
from transformers import PreTrainedTokenizerBase, RepetitionPenaltyLogitsProcessor
23

OlivierDehaene's avatar
OlivierDehaene committed
24

25
26
27
class NextTokenChooser:
    def __init__(
        self,
drbh's avatar
drbh committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
        watermark: bool = False,
        temperature: float = 1.0,
        repetition_penalty: float = 1.0,
        frequency_penalty: float = 0.0,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        typical_p: Optional[float] = None,
        do_sample: bool = False,
        seed: int = 0,
        device: str = "cpu",
        tokenizer: Optional[PreTrainedTokenizerBase] = None,
        grammar: str = "",
        grammar_type: GrammarType = GrammarType.GRAMMAR_TYPE_NONE,
        fsm_grammar_state: int = 0,
42
43
44
45
46
47
    ):
        self.watermark_processor = (
            WatermarkLogitsProcessor(device=device) if watermark else None
        )
        self.repetition_processor = (
            RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty)
48
49
50
51
52
53
            if repetition_penalty and repetition_penalty != 1.0
            else None
        )
        self.frequency_processor = (
            FrequencyPenaltyLogitsProcessor(penalty=frequency_penalty)
            if frequency_penalty and frequency_penalty != 0.0
54
55
            else None
        )
drbh's avatar
drbh committed
56
57
58
59
60
61
        self.grammar_processor = (
            GrammarLogitProcessor(tokenizer, device, grammar, grammar_type)
            if grammar != ""
            else None
        )
        self.tokenizer = tokenizer
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

        has_warpers = (
            (temperature is not None and temperature != 1.0)
            or (top_k is not None and top_k != 0)
            or (top_p is not None and top_p < 1.0)
            or (typical_p is not None and typical_p < 1.0)
        )
        if has_warpers:
            self.static_warper = static_warper(
                temperature=temperature, top_k=top_k, top_p=top_p, typical_p=typical_p
            )
        else:
            self.static_warper = None

        sampling = do_sample or has_warpers
drbh's avatar
drbh committed
77

78
        self.choice = Sampling(seed, device) if sampling else Greedy()
drbh's avatar
drbh committed
79
80
        self.fsm_grammar_state = fsm_grammar_state
        self.grammar = grammar
81
82

    def __call__(self, input_ids, scores):
83
        if self.watermark_processor is not None:
84
            scores = self.watermark_processor(input_ids, scores)
85
        if self.repetition_processor is not None:
86
            scores = self.repetition_processor(input_ids, scores)
87
88
        if self.frequency_processor is not None:
            scores = self.frequency_processor(input_ids, scores)
drbh's avatar
drbh committed
89
90
        if self.grammar_processor is not None:
            scores = self.grammar_processor(scores, self.fsm_grammar_state)
91

92
93
94
95
        if self.static_warper is None:
            next_logprob = torch.log_softmax(scores, -1)
        else:
            scores, next_logprob = self.static_warper(scores)
96

97
        next_id = self.choice(scores[-1]).view(1, 1)
98

99
        return next_id, next_logprob
100

drbh's avatar
drbh committed
101
102
103
104
105
106
107
    def advance_grammar(self, next_id: int):
        if self.grammar_processor is not None:
            self.fsm_grammar_state = self.grammar_processor.advance(
                next_id, self.fsm_grammar_state
            )
        return self

108
109
    @classmethod
    def from_pb(
110
111
112
        cls,
        pb: generate_pb2.NextTokenChooserParameters,
        device: torch.device,
drbh's avatar
drbh committed
113
        tokenizer: PreTrainedTokenizerBase,
114
115
    ) -> "NextTokenChooser":
        return NextTokenChooser(
116
            watermark=pb.watermark,
117
118
            temperature=pb.temperature,
            repetition_penalty=pb.repetition_penalty,
119
            frequency_penalty=pb.frequency_penalty,
120
121
            top_k=pb.top_k,
            top_p=pb.top_p,
122
            typical_p=pb.typical_p,
123
124
125
            do_sample=pb.do_sample,
            seed=pb.seed,
            device=device,
drbh's avatar
drbh committed
126
127
128
            tokenizer=tokenizer,
            grammar=pb.grammar,
            grammar_type=pb.grammar_type,
129
130
131
132
133
        )


class StopSequenceCriteria:
    def __init__(self, stop_sequence: str):
134
        stop_sequence = re.escape(stop_sequence)
135
        self.regex = re.compile(f"{stop_sequence}$")
136
137
138
139
140
141
142
143
144
145
146
147

    def __call__(self, output: str) -> bool:
        if self.regex.findall(output):
            return True
        return False


class StoppingCriteria:
    def __init__(
        self,
        eos_token_id: int,
        stop_sequence_criterias: List[StopSequenceCriteria],
148
149
        max_new_tokens: int = 20,
        ignore_eos_token: bool = False,
150
151
152
153
154
    ):
        self.eos_token_id = eos_token_id
        self.stop_sequence_criterias = stop_sequence_criterias
        self.max_new_tokens = max_new_tokens
        self.current_tokens = 0
155
        self.current_output = ""
156
        self.ignore_eos_token = ignore_eos_token
157
158
159
160
161
162

    def __call__(self, last_token: int, last_output: str) -> Tuple[bool, Optional[str]]:
        self.current_tokens += 1
        if self.current_tokens >= self.max_new_tokens:
            return True, FinishReason.FINISH_REASON_LENGTH

163
        if not self.ignore_eos_token and last_token == self.eos_token_id:
164
165
            return True, FinishReason.FINISH_REASON_EOS_TOKEN

166
167
168
169
170
171
172
173
174
        if self.stop_sequence_criterias:
            self.current_output += last_output
            # There is no need to keep an output that is too long
            if len(self.current_output) > 300:
                # Slice to -200 to avoid doing it all the time
                self.current_output = self.current_output[-200:]
            for stop_sequence_criteria in self.stop_sequence_criterias:
                if stop_sequence_criteria(self.current_output):
                    return True, FinishReason.FINISH_REASON_STOP_SEQUENCE
175
176
177
178
179
180
181
182
183
184
185
186
187

        return False, None

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.StoppingCriteriaParameters,
        tokenizer: PreTrainedTokenizerBase,
    ) -> "StoppingCriteria":
        stop_sequence_criterias = [
            StopSequenceCriteria(sequence) for sequence in pb.stop_sequences
        ]
        return StoppingCriteria(
188
189
190
191
            tokenizer.eos_token_id,
            stop_sequence_criterias,
            pb.max_new_tokens,
            pb.ignore_eos_token,
192
        )
193

OlivierDehaene's avatar
OlivierDehaene committed
194
195
196
197
198
199
200
201

def create_n_gram_speculation(
    input_ids: torch.Tensor,
    next_ids: torch.Tensor,
    accepted_ids: torch.Tensor,
    speculate: int,
    verbose: bool,
):
Nicolas Patry's avatar
Nicolas Patry committed
202
203
204
205
206
207
    # Very trivial approach, find first match in the string.
    # This is much less refined than actual n-gram but seems to work
    # relatively OK in grounded mode and is by far much faster with
    # much less worst case complexity as everything happens on device.
    B = accepted_ids.shape[0]
    device = input_ids.device
OlivierDehaene's avatar
OlivierDehaene committed
208
    seeds = next_ids[accepted_ids.cumsum(dim=-1) - 1]
Nicolas Patry's avatar
Nicolas Patry committed
209
    indices = (input_ids == seeds.unsqueeze(-1)).max(dim=1).indices + 1
OlivierDehaene's avatar
OlivierDehaene committed
210
211
212
    all_indices = indices.unsqueeze(-1).expand(B, speculate) + torch.arange(
        speculate, device=device
    )
Nicolas Patry's avatar
Nicolas Patry committed
213
214
215
216
    all_indices = torch.clamp(all_indices, max=input_ids.shape[1] - 1)

    speculative_ids = input_ids.gather(dim=-1, index=all_indices)
    return speculative_ids
217

OlivierDehaene's avatar
OlivierDehaene committed
218

219
220
221
222
223
224
225
226
class HeterogeneousNextTokenChooser:
    def __init__(
        self,
        dtype: torch.dtype,
        device: torch.device,
        watermark: List[bool],
        temperature: List[float],
        repetition_penalty: List[float],
227
        frequency_penalty: List[float],
228
229
230
231
232
        top_k: List[int],
        top_p: List[float],
        typical_p: List[float],
        do_sample: List[bool],
        seeds: List[int],
drbh's avatar
drbh committed
233
234
235
236
        tokenizer: PreTrainedTokenizerBase,
        grammars: List[str],
        grammar_types: List[int],
        fsm_grammar_states=List[int],
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    ):
        warpers = []

        self.watermark_processor = (
            HeterogeneousProcessorWrapper(
                {
                    i: WatermarkLogitsProcessor(device=device)
                    for i, do_watermark in enumerate(watermark)
                    if do_watermark
                }
            )
            if any(watermark)
            else None
        )

        self.repetition_processor = (
            HeterogeneousRepetitionPenaltyLogitsProcessor(
                repetition_penalty, dtype, device
            )
            if any([x != 1.0 for x in repetition_penalty])
            else None
        )

260
261
262
263
264
265
266
267
        self.frequency_processor = (
            HeterogeneousFrequencyPenaltyLogitsProcessor(
                frequency_penalty, dtype, device
            )
            if any([x != 0.0 for x in frequency_penalty])
            else None
        )

drbh's avatar
drbh committed
268
269
270
271
272
273
274
275
        self.grammar_processor = (
            HeterogeneousGrammarLogitProcessor(
                tokenizer, device, grammars, grammar_types
            )
            if any([grammar != "" for grammar in grammars])
            else None
        )

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        if any([x != 1.0 for x in temperature]):
            do_sample = [
                sample or x != 1.0 for x, sample in zip(temperature, do_sample)
            ]
            warpers.append(
                HeterogeneousTemperatureLogitsWarper(temperature, dtype, device)
            )

        if any([x != 0 for x in top_k]):
            do_sample = [sample or x != 0 for x, sample in zip(top_k, do_sample)]
            warpers.append(HeterogeneousTopKLogitsWarper(top_k, device))

        if any([x < 1.0 for x in top_p]):
            do_sample = [sample or x < 1.0 for x, sample in zip(top_p, do_sample)]
            warpers.append(HeterogeneousTopPLogitsWarper(top_p, dtype, device))

        if any([x < 1.0 for x in typical_p]):
            do_sample = [sample or x < 1.0 for x, sample in zip(typical_p, do_sample)]
            warpers.append(HeterogeneousTypicalLogitsWarper(typical_p, dtype, device))

        self.warpers = warpers

        if any(do_sample):
            self.choice = HeterogeneousSampling(do_sample, seeds, device)
        else:
            self.choice = Greedy()

        self.seeds = seeds
        self.do_sample = do_sample
305
306
        self.dtype = dtype
        self.device = device
drbh's avatar
drbh committed
307
308
309
310
        self.tokenizer = tokenizer
        self.fsm_grammar_states = fsm_grammar_states
        self.grammars = grammars
        self.grammar_types = grammar_types
311

OlivierDehaene's avatar
OlivierDehaene committed
312
313
314
315
316
317
318
319
320
    def __call__(
        self,
        input_ids: torch.Tensor,
        scores: torch.Tensor,
        speculate: int,
        speculated_ids: Optional[torch.Tensor] = None,
        speculative_scores: Optional[torch.Tensor] = None,
        verbose=False,
    ):
Nicolas Patry's avatar
Nicolas Patry committed
321
322
323
324
325
326
327
328
329
330
        if speculated_ids is not None:
            B = scores.shape[0] // (speculated_ids.shape[1] + 1)
            S = speculated_ids.shape[1] + 1
            scores = scores.view(B, S, -1)
        else:
            B = scores.shape[0]
            S = 1
            scores = scores.view(B, S, -1)

        next_ids = torch.zeros((B, S), device=scores.device, dtype=torch.long)
drbh's avatar
drbh committed
331

Nicolas Patry's avatar
Nicolas Patry committed
332
333
334
335
336
337
        for j in range(S):
            _scores = scores[:, j]
            if self.watermark_processor is not None:
                _scores = self.watermark_processor(input_ids, _scores)
            if self.repetition_processor is not None:
                _scores = self.repetition_processor(input_ids, _scores)
338
339
            if self.frequency_processor is not None:
                _scores = self.frequency_processor(input_ids, _scores)
drbh's avatar
drbh committed
340
            if self.grammar_processor is not None:
OlivierDehaene's avatar
OlivierDehaene committed
341
                _scores = self.grammar_processor(_scores, self.fsm_grammar_states)
342
343
            for warper in self.warpers:
                _scores = warper(input_ids, _scores)
Nicolas Patry's avatar
Nicolas Patry committed
344
345
346
            _next_ids = self.choice(_scores)
            scores[:, j] = _scores
            next_ids[:, j] = _next_ids
OlivierDehaene's avatar
OlivierDehaene committed
347
        next_ids = next_ids.view(B * S)
Nicolas Patry's avatar
Nicolas Patry committed
348
349
        allscores = scores.view(B * S, -1)
        alllogprobs = torch.log_softmax(allscores, -1)
Nicolas Patry's avatar
Nicolas Patry committed
350
351
352
353
354
355
356

        if speculated_ids is not None:
            accepted_ids = []
            B = next_ids.shape[0] // (speculated_ids.shape[1] + 1)
            S = speculated_ids.shape[1] + 1
            indices = []
            for i in range(B):
OlivierDehaene's avatar
OlivierDehaene committed
357
                _next_ids = next_ids[i * S : (i + 1) * S]
Nicolas Patry's avatar
Nicolas Patry committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
                _speculated_ids = speculated_ids[i]
                validate_speculative = _next_ids[:-1] == _speculated_ids
                index = i * S
                accepted = 1
                # First is always valid
                indices.append(index)
                for valid in validate_speculative.tolist():
                    if valid:
                        index += 1
                        accepted += 1
                        indices.append(index)
                    else:
                        break
                accepted_ids.append(accepted)

OlivierDehaene's avatar
OlivierDehaene committed
373
374
375
            accepted_ids = torch.tensor(
                accepted_ids, device=input_ids.device, dtype=input_ids.dtype
            )
Nicolas Patry's avatar
Nicolas Patry committed
376
            next_ids = next_ids[indices]
Nicolas Patry's avatar
Nicolas Patry committed
377
            logprobs = alllogprobs[indices]
Nicolas Patry's avatar
Nicolas Patry committed
378
379
380
381
382
            indices = torch.arange(B, device=input_ids.device) * S
            if speculative_scores is not None:
                speculative_scores = speculative_scores[indices + accepted_ids - 1]
        else:
            accepted_ids = torch.ones_like(next_ids)
Nicolas Patry's avatar
Nicolas Patry committed
383
            logprobs = alllogprobs
384

Nicolas Patry's avatar
Nicolas Patry committed
385
        next_logprobs = torch.gather(logprobs, 1, next_ids.view(-1, 1)).view(-1)
386

Nicolas Patry's avatar
Nicolas Patry committed
387
388
389
390
391
392
        if speculate > 0:
            if speculative_scores is not None:
                # Medusa provided some scores
                speculative_ids = Greedy()(speculative_scores)
            else:
                # n-gram
OlivierDehaene's avatar
OlivierDehaene committed
393
394
395
                speculative_ids = create_n_gram_speculation(
                    input_ids, next_ids, accepted_ids, speculate, verbose
                )
Nicolas Patry's avatar
Nicolas Patry committed
396
397
398
        else:
            speculative_ids = None

Nicolas Patry's avatar
Nicolas Patry committed
399
        return next_ids, next_logprobs, alllogprobs, accepted_ids, speculative_ids
400

drbh's avatar
drbh committed
401
402
403
    def advance_grammar(self, next_ids: List[int]):
        if self.grammar_processor is not None:
            other_new_states = self.grammar_processor.advance_batch(
OlivierDehaene's avatar
OlivierDehaene committed
404
                next_ids, self.fsm_grammar_states
drbh's avatar
drbh committed
405
406
407
408
409
410
            )
            self.fsm_grammar_states = other_new_states
        return self

    def advance_grammar_single(self, grammar_state_index: int, next_id: int):
        if self.grammar_processor is not None:
OlivierDehaene's avatar
OlivierDehaene committed
411
412
413
414
415
416
            self.fsm_grammar_states[grammar_state_index] = (
                self.grammar_processor.advance_at_index(
                    next_id,
                    self.fsm_grammar_states[grammar_state_index],
                    grammar_state_index,
                )
drbh's avatar
drbh committed
417
418
419
            )
        return self

420
421
422
423
424
425
426
    def filter(self, indices):
        if self.watermark_processor is not None:
            self.watermark_processor = self.watermark_processor.filter(indices)

        if self.repetition_processor is not None:
            self.repetition_processor = self.repetition_processor.filter(indices)

427
428
429
        if self.frequency_processor is not None:
            self.frequency_processor = self.frequency_processor.filter(indices)

drbh's avatar
drbh committed
430
431
432
        if self.grammar_processor is not None:
            self.grammar_processor = self.grammar_processor.filter(indices)

433
434
435
436
437
438
439
440
441
442
        filtered_warpers = []
        for warper in self.warpers:
            filtered_warper = warper.filter(indices)
            if filtered_warper is not None:
                filtered_warpers.append(filtered_warper)
        self.warpers = filtered_warpers

        self.seeds = [self.seeds[i] for i in indices]
        self.do_sample = [self.do_sample[i] for i in indices]

drbh's avatar
drbh committed
443
444
445
446
447
448
449
450
451
452
453
454
        new_grammars = []
        new_fsm_grammar_states = []
        new_grammar_types = []
        for i in indices:
            new_grammars.append(self.grammars[i])
            new_fsm_grammar_states.append(self.fsm_grammar_states[i])
            new_grammar_types.append(self.grammar_types[i])

        self.grammars = new_grammars
        self.fsm_grammar_states = new_fsm_grammar_states
        self.grammar_types = new_grammar_types

455
456
457
458
459
460
461
462
463
464
465
466
467
        if any(self.do_sample):
            self.choice.filter(indices)
        else:
            self.choice = Greedy()

        return self

    @classmethod
    def from_pb(
        cls,
        pb: List[generate_pb2.NextTokenChooserParameters],
        dtype: torch.dtype,
        device: torch.device,
drbh's avatar
drbh committed
468
        tokenizer: PreTrainedTokenizerBase,
469
470
471
472
473
    ) -> "HeterogeneousNextTokenChooser":
        return HeterogeneousNextTokenChooser(
            watermark=[pb_.watermark for pb_ in pb],
            temperature=[pb_.temperature for pb_ in pb],
            repetition_penalty=[pb_.repetition_penalty for pb_ in pb],
474
            frequency_penalty=[pb_.frequency_penalty for pb_ in pb],
475
476
477
478
479
480
481
            top_k=[pb_.top_k for pb_ in pb],
            top_p=[pb_.top_p for pb_ in pb],
            typical_p=[pb_.typical_p for pb_ in pb],
            do_sample=[pb_.do_sample for pb_ in pb],
            seeds=[pb_.seed for pb_ in pb],
            device=device,
            dtype=dtype,
drbh's avatar
drbh committed
482
483
484
485
            tokenizer=tokenizer,
            grammars=[pb_.grammar for pb_ in pb],
            grammar_types=[pb_.grammar_type for pb_ in pb],
            fsm_grammar_states=[0] * len(pb),
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
        )


class Sampling:
    def __init__(self, seed: int, device: str = "cpu"):
        self.generator = torch.Generator(device)
        self.generator.manual_seed(seed)
        self.seed = seed

    def __call__(self, logits):
        probs = torch.nn.functional.softmax(logits, -1)
        # Avoid GPU<->CPU sync done by torch multinomial
        # See: https://github.com/pytorch/pytorch/blob/925a3788ec5c06db62ca732a0e9425a26a00916f/aten/src/ATen/native/Distributions.cpp#L631-L637
        q = torch.empty_like(probs).exponential_(1, generator=self.generator)
        return probs.div_(q).argmax()


class Greedy:
    def __call__(self, logits):
        return logits.argmax(dim=-1)


class HeterogeneousSampling:
    r"""
    Mixed greedy and probabilistic sampling. Compute both and pick the right one for each sample.
    """

    def __init__(self, do_sample: List[bool], seeds: List[int], device: torch.device):
        self.seeds = seeds

        self.greedy_indices = []
        self.sampling_mapping = {}
        for i, (sample, seed) in enumerate(zip(do_sample, seeds)):
            if sample:
                self.sampling_mapping[i] = Sampling(seed, device)
            else:
                self.greedy_indices.append(i)

        self.greedy = Greedy()

    def __call__(self, logits):
        out = torch.empty(logits.shape[0], dtype=torch.int64, device=logits.device)
        if self.greedy_indices:
            # Computing for all indices is faster than slicing
            torch.argmax(logits, -1, out=out)

        for i, sampling in self.sampling_mapping.items():
            out[i] = sampling(logits[i])
        return out

    def filter(self, indices):
        new_greedy_indices = []
        new_sampling_mapping = {}
        for i, idx in enumerate(indices):
            if idx in self.sampling_mapping:
                new_sampling_mapping[i] = self.sampling_mapping[idx]
            else:
                new_greedy_indices.append(i)

        self.greedy_indices = new_greedy_indices
        self.sampling_mapping = new_sampling_mapping
        return self
Nicolas Patry's avatar
Nicolas Patry committed
548
549
550


def batch_top_tokens(
551
552
553
554
    top_n_tokens: List[int],
    top_n_tokens_tensor: torch.Tensor,
    logprobs: torch.Tensor,
    accepted_ids: torch.Tensor,
Nicolas Patry's avatar
Nicolas Patry committed
555
) -> Tuple[List[List[List[int]]], List[List[List[float]]]]:
Nicolas Patry's avatar
Nicolas Patry committed
556
557
558
559
560
561
562
563
    """Find the top n most likely tokens for a batch of generations.

    When multiple tokens have equal probabilities and they don't all fit, the
    remaining tokens are also returned.
    """
    max_top_n = max(top_n_tokens)
    # Early exit when top_n_tokens is not used
    if max_top_n == 0:
Nicolas Patry's avatar
Nicolas Patry committed
564
565
566
567
568
        return [[[]]] * len(top_n_tokens), [[[]]] * len(top_n_tokens)

    batch_size = accepted_ids.shape[0]
    speculate_size = logprobs.shape[0] // batch_size
    top_n_tokens_tensor = top_n_tokens_tensor.repeat_interleave(speculate_size)
Nicolas Patry's avatar
Nicolas Patry committed
569
    # Ensure top_n doesn't exceed vocab size
570
571
572
573
574
    top_n_tokens = [
        min(tok, logprobs.size(-1))
        for tok in top_n_tokens
        for _ in range(speculate_size)
    ]
Nicolas Patry's avatar
Nicolas Patry committed
575
576
577

    # Parallel kthvalue adapted from https://discuss.pytorch.org/t/how-to-efficiently-get-the-k-th-largest-values-in-parallel/160529/2
    # Sorted topk is faster than torch.sort() since we only need a small subset
Nicolas Patry's avatar
Nicolas Patry committed
578
579
    sorted_top_k = torch.topk(logprobs, k=max_top_n, dim=-1, sorted=True).values

Nicolas Patry's avatar
Nicolas Patry committed
580
581
582
583
584
585
586
587
    nth_highest = torch.gather(
        sorted_top_k, 1, (top_n_tokens_tensor - 1).clip(min=0).unsqueeze(1)
    )
    nth_highest[nth_highest == -float("inf")] = torch.finfo(logprobs.dtype).min

    # Find the new "fuzzy" top n values
    top_n_indices = (logprobs >= nth_highest).nonzero()
    _, top_n_ishes = torch.unique_consecutive(top_n_indices[:, 0], return_counts=True)
OlivierDehaene's avatar
OlivierDehaene committed
588

589
    k = 1 if top_n_ishes.numel() == 0 else top_n_ishes.max()
Nicolas Patry's avatar
Nicolas Patry committed
590
    # Take a new topk for these new max n values
591
    top_k = torch.topk(logprobs, k=k, dim=1, sorted=True)
Nicolas Patry's avatar
Nicolas Patry committed
592
593
594
595
596

    top_n_ishes = top_n_ishes.tolist()
    top_indices = top_k.indices.tolist()
    top_values = top_k.values.tolist()

Nicolas Patry's avatar
Nicolas Patry committed
597
598
599
600
601
602
    batch_top_token_ids = []
    batch_top_token_logprobs = []
    accepted_ids_list = accepted_ids.tolist()
    for i, n_accepted_ids in enumerate(accepted_ids_list):
        start = speculate_size * i
        stop = speculate_size * (i + 1)
603
604
605
606
        _top_indices = top_indices[start:stop]
        _top_values = top_values[start:stop]
        _top_n_ishes = top_n_ishes[start:stop]
        _top_n_tokens = top_n_tokens[start:stop]
Nicolas Patry's avatar
Nicolas Patry committed
607
608
609
610
611
612
613
614
615

        _top_indices = _top_indices[:n_accepted_ids]
        _top_values = _top_values[:n_accepted_ids]
        _top_n_ishes = _top_n_ishes[:n_accepted_ids]
        _top_n_tokens = _top_n_tokens[:n_accepted_ids]

        row_top_token_ids = []
        row_top_token_logprobs = []

616
617
618
        for idxs, vals, n, req_n in zip(
            _top_indices, _top_values, _top_n_ishes, _top_n_tokens
        ):
Nicolas Patry's avatar
Nicolas Patry committed
619
620
621
622
623
624
625
626
627
628
            indices = idxs[:n] if req_n > 0 else []
            values = vals[:n] if req_n > 0 else []

            row_top_token_ids.append(indices)
            row_top_token_logprobs.append(values)

        batch_top_token_ids.append(row_top_token_ids)
        batch_top_token_logprobs.append(row_top_token_logprobs)

    return batch_top_token_ids, batch_top_token_logprobs