radix.rs 29.1 KB
Newer Older
1
2
use crate::block_allocator::{Allocator, BlockAllocation};
use slotmap::{DefaultKey, SlotMap};
3
4
5
6
7
8
9
10
11
12
13
14
15
16
use std::{
    collections::{BTreeSet, HashMap},
    sync::Arc,
};

pub struct RadixAllocator {
    allocation_id: u64,

    allocations: HashMap<u64, RadixAllocation>,

    cache_blocks: RadixTrie,

    /// Blocks that are immediately available for allocation.
    free_blocks: Vec<u32>,
17
18
19
20
21
22
23

    #[allow(dead_code)]
    // This isn't used because the prefix need to match without the windowing
    // mecanism. This at worst is overallocating, not necessarily being wrong.
    window_size: Option<u32>,

    block_size: u32,
24
25
26
27
28
29
30
}

impl RadixAllocator {
    pub fn new(block_size: u32, n_blocks: u32, window_size: Option<u32>) -> Self {
        RadixAllocator {
            allocation_id: 0,
            allocations: HashMap::new(),
31
            cache_blocks: RadixTrie::new(block_size as usize),
32
33
34

            // Block 0 is reserved for health checks.
            free_blocks: (1..n_blocks).collect(),
35
36
            window_size,
            block_size,
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        }
    }

    fn alloc_or_reclaim(&mut self, n_blocks_needed: usize) -> Option<Vec<u32>> {
        if self.free_blocks.len() < n_blocks_needed {
            // This is a bit annoying, we first extend the free list and then
            // split it off again below. This is because we need to put it on
            // the free list if we cannot allocate enough blocks. This is only
            // temporary, the trie needs to be able to report whether it can
            // allocate the requested amount. Just not implemented yet.
            self.free_blocks.extend(
                self.cache_blocks
                    .evict(n_blocks_needed - self.free_blocks.len()),
            );
        }

        if self.free_blocks.len() >= n_blocks_needed {
            Some(
                self.free_blocks
                    .split_off(self.free_blocks.len() - n_blocks_needed),
            )
        } else {
            None
        }
    }
}

64
// Allocator trait
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
impl Allocator for RadixAllocator {
    fn allocate(
        &mut self,
        tokens: u32,
        prefill_tokens: Option<Arc<Vec<u32>>>,
    ) -> Option<BlockAllocation> {
        let mut blocks = vec![];
        let prefix_node = if let Some(prefill_tokens) = prefill_tokens.as_ref() {
            let node_id = self
                .cache_blocks
                .find(prefill_tokens.as_slice(), &mut blocks);
            // Even if this allocation fails below, we need to increase he
            // refcount to ensure that the prefix that was found is not evicted.

            node_id
        } else {
            self.cache_blocks.root_id()
        };

        self.cache_blocks
            .incref(prefix_node)
            .expect("Failed to increment refcount");

88
        let prefix_len = blocks.len() * self.block_size as usize;
89
90
        let suffix_len = tokens - prefix_len as u32;

91
92
93
        let suffix_blocks = (suffix_len + self.block_size - 1) / self.block_size;

        match self.alloc_or_reclaim(suffix_blocks as usize) {
94
95
96
97
98
99
100
101
102
103
            Some(suffix_blocks) => blocks.extend(suffix_blocks),
            None => {
                self.cache_blocks
                    .decref(prefix_node)
                    .expect("Failed to decrement refcount");
                return None;
            }
        }

        // 1:1 mapping of blocks and slots.
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        let slots = if self.block_size == 1 {
            blocks.clone()
        } else {
            let mut slots = Vec::with_capacity(blocks.len() * self.block_size as usize);
            'slots: for block_id in &blocks {
                for s in (block_id * self.block_size)..((block_id + 1) * self.block_size) {
                    slots.push(s);
                    if slots.len() as u32 == tokens {
                        break 'slots;
                    }
                }
            }
            slots
        };
118
119
120
121
122
123
124

        let allocation = RadixAllocation {
            prefix_node,
            cached_prefix_len: prefix_len,
            prefill_tokens: prefill_tokens.clone(),
        };

125
126
        tracing::debug!("Blocks {blocks:?}");

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        self.allocation_id += 1;
        self.allocations.insert(self.allocation_id, allocation);

        Some(BlockAllocation {
            allocation_id: self.allocation_id,
            block_allocator: None,
            blocks,
            slots,
            prefix_len: prefix_len as u32,
        })
    }

    fn free(&mut self, blocks: Vec<u32>, allocation_id: u64) {
        let allocation = match self.allocations.remove(&allocation_id) {
            Some(allocation) => allocation,
            None => unreachable!("Tried to free an unknown allocation."),
        };

        self.cache_blocks
            .decref(allocation.prefix_node)
            .expect("Failed to decrement refcount");

        if let Some(prefill_tokens) = allocation.prefill_tokens {
            let prefill_tokens = prefill_tokens.as_slice();

            // If there are prefill tokens that did not come from the cache,
            // add them to the cache.
            if prefill_tokens.len() > allocation.cached_prefix_len {
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
                let aligned =
                    (prefill_tokens.len() / self.block_size as usize) * self.block_size as usize;
                if aligned > 0 {
                    let prefix_len = self
                        .cache_blocks
                        .insert(
                            &prefill_tokens[..aligned],
                            &blocks[..aligned / self.block_size as usize],
                        )
                        // Unwrap, failing is a programming error.
                        .expect("Failed to store prefill tokens");
                    // We can have a prefill with the following structure:
                    //
                    // |---| From the prefix cache.
                    // A B C D E F G
                    //|--------| Found in the trie during insertion.
                    //
                    // This means that while processing this request there was a
                    // partially overlapping request that had A..=E in its
                    // prefill. In this case we need to free the blocks D E.
                    if prefix_len > allocation.cached_prefix_len {
                        self.free_blocks.extend(
                            &blocks[allocation.cached_prefix_len / self.block_size as usize
                                ..prefix_len / self.block_size as usize],
                        );
                    }
                }
182
183
184
            }

            // Free non-prefill blocks.
185
186
            self.free_blocks
                .extend(&blocks[prefill_tokens.len() / self.block_size as usize..]);
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        } else {
            self.free_blocks.extend(blocks);
        }
    }
}

struct RadixAllocation {
    prefix_node: NodeId,
    cached_prefix_len: usize,
    prefill_tokens: Option<Arc<Vec<u32>>>,
}

// Radix trie that is heavily inspired by radix attention from sglang.
//
// The trie is optimized for prefix caching:
//
// - A normal radix trie stores discrete values. In this radix trie,
//   inserting *abc* with value *xyz* will also enable lookup for
//   *a* (*x*) and *ab* (*xy*).
// - As a result, every value is required to have the same length as
//   the key.
// - We store additional information in each node, such as last access
//   time and a reference count.

#[derive(Debug)]
pub enum TrieError {
    InvalidNodeId,
    RefCountUnderflow,
    BlockTokenCountMismatch,
}

pub type NodeId = DefaultKey;

#[derive(Debug)]
pub struct RadixTrie {
    /// Identifier of the root nod.
    root: DefaultKey,

    /// Leave node identifiers ordered by increasing recency.
    leaves: BTreeSet<(u64, NodeId)>,

    /// All trie nodes.
    nodes: SlotMap<NodeId, TrieNode>,

    /// Time as a monotonically increating counter to avoid the system
    /// call that a real time lookup would require.
    time: u64,
Nicolas Patry's avatar
Nicolas Patry committed
234

235
236
    /// All blocks need to be aligned with this
    block_size: usize,
237
}
238
239
240

impl RadixTrie {
    /// Construct a new radix trie.
241
    pub fn new(block_size: usize) -> Self {
242
243
244
245
246
247
248
249
        let root = TrieNode::new(vec![], vec![], 0, None);
        let mut nodes = SlotMap::new();
        let root = nodes.insert(root);
        RadixTrie {
            leaves: BTreeSet::new(),
            nodes,
            root,
            time: 0,
250
            block_size,
251
252
253
254
255
256
        }
    }

    /// Find the prefix of the given tokens.
    ///
    /// The blocks corresponding to the part of the prefix that could be found
257
    /// are written to `blocks`. The number of blocks is in `0..=tokens.len()`.
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    /// Returns the identifier of the trie node that contains the longest
    /// prefix. The node identifier can be used by callers to e.g. increase its
    /// reference count.
    ///
    /// Using this method will update the access time of the traversed nodes.
    pub fn find(&mut self, key: &[u32], blocks: &mut Vec<u32>) -> NodeId {
        self.time += 1;
        self.find_(self.root, key, blocks)
    }

    /// Find worker.
    fn find_(&mut self, mut node_id: NodeId, key: &[u32], blocks: &mut Vec<u32>) -> NodeId {
        let node = &self.nodes[node_id];

        if let Some(&child_id) = node.children.get(&key[0]) {
            self.update_access_time(child_id);
            let child = self.nodes.get(child_id).expect("Invalid child identifier");
275
276
277
            let shared_prefix_len = shared_prefix(&child.key, key, self.block_size);
            assert_eq!(shared_prefix_len % self.block_size, 0);
            blocks.extend(&child.blocks[..shared_prefix_len / self.block_size]);
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

            let key = &key[shared_prefix_len..];
            if !key.is_empty() {
                node_id = self.find_(child_id, key, blocks);
            }
        }

        node_id
    }

    /// Decrease the reference count of a node.
    pub fn decref(&mut self, node_id: NodeId) -> Result<(), TrieError> {
        // We don't care about refcounting for root, since it will never
        // be evicted.
        if node_id == self.root {
            return Ok(());
        }

        let node = self
            .nodes
            .get_mut(node_id)
            .ok_or(TrieError::InvalidNodeId)?;
        if node.ref_count == 0 {
            return Err(TrieError::RefCountUnderflow);
        }

        node.ref_count -= 1;
        if node.ref_count == 0 {
            self.leaves.insert((node.last_accessed, node_id));
        }

        Ok(())
    }

    /// Increase the reference count of a node.
    pub fn incref(&mut self, node_id: NodeId) -> Result<(), TrieError> {
        if node_id == self.root {
            return Ok(());
        }

        let node = self
            .nodes
            .get_mut(node_id)
            .ok_or(TrieError::InvalidNodeId)?;
        if node.ref_count == 0 {
            self.leaves.remove(&(node.last_accessed, node_id));
        }
        node.ref_count += 1;

        Ok(())
    }

    /// Evict `n_blocks` from the trie.
    ///
    /// Returns the evicted blocks. When the length is less than `n_blocks`,
    /// not enough blocks could beevicted.
    pub fn evict(&mut self, n_blocks: usize) -> Vec<u32> {
        // NOTE: we don't return Result here. If any of the unwrapping fails,
        // it's a programming error in the trie implementation, not a user
        // error caused by e.g. an invalid argument.

        // TODO: add some bookkeeping in the future to check whether we can
        // evict n_blocks and return `None` if we can't. We are now needlessly
        // evicting prefixes from the cache in such a case.
        let mut evicted = Vec::new();

        while let Some((last_access, node_id)) = self.leaves.pop_first() {
            let blocks_needed = n_blocks - evicted.len();

            let node = self.nodes.get(node_id).expect("Leave does not exist");
            if blocks_needed >= node.blocks.len() {
                // We need to evict the whole node if we need more blocks than it has.
                let node = self.remove_node(node_id);
                evicted.extend(node.blocks);

                if evicted.len() >= n_blocks {
                    break;
                }
            } else {
                // The node has more blocks than needed, so we'll just remove
                // the required number of blocks and leave the remaining blocks
                // untouched.
                let node = self.nodes.get_mut(node_id).expect("Leave does not exist");
                node.key.truncate(node.blocks.len() - blocks_needed);
                evicted.extend(node.blocks.split_off(node.blocks.len() - blocks_needed));
                self.leaves.insert((last_access, node_id));
                break;
            }
        }

        evicted
    }

    /// Insert a prefill along with its blocks.
    ///
    /// This method returns the length of the prefix that was already
    /// in the trie. E.g. if the length is 10, this means that for
    /// the first 10 elements of the tree **the blocks are not updated**.
    pub fn insert(&mut self, tokens: &[u32], blocks: &[u32]) -> Result<usize, TrieError> {
        self.time += 1;
378
379
        let common = self.insert_(self.root, tokens, blocks)?;
        Ok(common)
380
381
382
383
384
385
386
387
388
389
390
391
392
    }

    /// Insertion worker.
    fn insert_(
        &mut self,
        node_id: NodeId,
        tokens: &[u32],
        blocks: &[u32],
    ) -> Result<usize, TrieError> {
        // TODO: in the future we may want to check that the blocks match for
        // the part of the prefix that is already in the trie to detect
        // mismatches.

393
        if tokens.len() != blocks.len() * self.block_size {
394
395
396
397
398
399
400
401
402
403
            return Err(TrieError::BlockTokenCountMismatch);
        }

        if let Some(&child_id) = self.nodes[node_id].children.get(&tokens[0]) {
            self.update_access_time(child_id);
            let child = self
                .nodes
                .get_mut(child_id)
                // Unwrap here, since failure is a bug.
                .expect("Child node does not exist");
404
            let shared_prefix_len = shared_prefix(&child.key, tokens, self.block_size);
405
406

            // We are done, the prefix is already in the trie.
407
            if shared_prefix_len == tokens.len() || shared_prefix_len == 0 {
408
409
410
411
412
413
414
415
416
                return Ok(shared_prefix_len);
            }

            // The node's prefix is a prefix of the insertion prefix.
            if shared_prefix_len == child.key.len() {
                return Ok(shared_prefix_len
                    + self.insert_(
                        child_id,
                        &tokens[shared_prefix_len..],
417
                        &blocks[shared_prefix_len / self.block_size..],
418
419
420
421
422
423
424
425
                    )?);
            }

            // The node's prefix and the insertion prefix only match partially,
            // split the node to just contain the matching part. Then insert the
            // remainder of the prefix into the node again
            let child_id = self.split_node(child_id, shared_prefix_len);
            let key = &tokens[shared_prefix_len..];
426
            let blocks = &blocks[shared_prefix_len / self.block_size..];
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
            Ok(shared_prefix_len + self.insert_(child_id, key, blocks)?)
        } else {
            self.add_node(node_id, tokens, blocks);
            Ok(0)
        }
    }

    fn split_node(&mut self, node_id: NodeId, prefix_len: usize) -> NodeId {
        // We have to make the current node a child to ensure that its
        // properties and node id stay the same.

        // This funcion unwraps, an  invalid node_id is a programming error.

        let node = self
            .nodes
            .get_mut(node_id)
            .expect("Node to-be split does not exist");
        let mut parent_key = node.key.split_off(prefix_len);
        let mut parent_blocks = node.blocks.split_off(prefix_len);

        // Move first part of the prefix to the parent. We swap to avoid
        // an allocation + copy for both splits of the key/blocks.
        std::mem::swap(&mut node.key, &mut parent_key);
        std::mem::swap(&mut node.blocks, &mut parent_blocks);

        let node_key = node.key[0];

        let grandparent_id = node.parent.expect("Node does not have a parent");
        let parent_id = self.add_node(grandparent_id, parent_key, parent_blocks);
        self.add_node_to_parent(parent_id, node_key, node_id);

        // Reborrow to make the borrow checker happy.
        let node = self
            .nodes
            .get_mut(node_id)
            .expect("Node to-be split does not exist");
        node.parent = Some(parent_id);

        parent_id
    }

    /// Create a node and add it to the parent.
    fn add_node(
        &mut self,
        parent_id: NodeId,
        key: impl Into<Vec<u32>>,
        blocks: impl Into<Vec<u32>>,
    ) -> NodeId {
        let key = key.into();
        let blocks = blocks.into();
        let first = key[0];

        let child = TrieNode::new(key, blocks, self.time, Some(parent_id));
        let child_id = self.nodes.insert(child);

        self.add_node_to_parent(parent_id, first, child_id);
        self.leaves.insert((self.time, child_id));

        child_id
    }

    /// Add a node to the parent.
    fn add_node_to_parent(&mut self, parent_id: NodeId, first: u32, child_id: NodeId) {
        // Unwrap here, passing in an unknown id is a programming error.
        let parent = self.nodes.get_mut(parent_id).expect("Unknown parent node");
        if parent.children.insert(first, child_id).is_none() {
            // Only increase reference count if child does not replace another child.
            self.incref(parent_id)
                .expect("Failed to increase parent refcount");
        }
    }

    /// Remove a node from the trie.
    fn remove_node(&mut self, node_id: NodeId) -> TrieNode {
        // Unwrap here, passing in an unknown id is a programming error.
        let node = self.nodes.remove(node_id).expect("Unknown node");
        let parent_id = node.parent.expect("Attempted to remove root node");
        let parent = self.nodes.get_mut(parent_id).expect("Unknown parent node");
        parent.children.remove(&node.key[0]);
        self.decref(parent_id)
            .expect("Failed to decrease parent refcount");
        self.nodes.remove(node_id);
        node
    }

    fn update_access_time(&mut self, node_id: NodeId) {
        // Unwrap here, passing in an unknown id is a programming error.
        let node = self.nodes.get_mut(node_id).expect("Unknown node");

        // Update the ordered leaves set if the node is a leave.
        if self.leaves.remove(&(node.last_accessed, node_id)) {
            self.leaves.insert((self.time, node_id));
        }

        node.last_accessed = self.time;
    }

    #[allow(dead_code)]
    #[doc(hidden)]
    /// Print debugging output for the trie.
    ///
    /// In contrast to `Debug` nicely formatted.
    pub fn print_debug(&self) {
        self.print_debug_(self.root, 0);
    }

    fn print_debug_(&self, node_id: NodeId, indent: usize) {
        let node = &self.nodes[node_id];
        eprintln!(
            "{}{:?}, key: {:?}, blocks: {:?}, ref_count: {}, last_accessed: {}, parent: {:?}, children: {:?}",
            " ".repeat(indent),
            node_id,
            node.key,
            node.blocks,
            node.ref_count,
            node.last_accessed,
            node.parent,
            node.children
        );
        for child_id in self.nodes[node_id].children.values() {
            self.print_debug_(*child_id, indent + 2);
        }
    }

    pub(crate) fn root_id(&self) -> DefaultKey {
        self.root
    }
}

/// Trie node.
#[derive(Debug)]
struct TrieNode {
    blocks: Vec<u32>,
    children: HashMap<u32, NodeId>,
    key: Vec<u32>,
    last_accessed: u64,
    parent: Option<NodeId>,
    ref_count: usize,
}

impl TrieNode {
    fn new(key: Vec<u32>, blocks: Vec<u32>, last_accessed: u64, parent: Option<NodeId>) -> Self {
        TrieNode {
            children: HashMap::new(),
            key,
            blocks,
            last_accessed,
            parent,
            ref_count: 0,
        }
    }
}

580
581
582
fn shared_prefix(left: &[u32], right: &[u32], block_size: usize) -> usize {
    let full = left.iter().zip(right).take_while(|(a, b)| a == b).count();
    (full / block_size) * block_size
583
584
585
586
587
588
}

#[cfg(test)]
mod tests {
    use std::sync::Arc;

589
    use super::*;
590

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
    #[test]
    fn allocator_block_size() {
        let mut cache = RadixAllocator::new(2, 12, None);
        let allocation = cache.allocate(8, Some(Arc::new(vec![0, 1, 2, 3]))).unwrap();
        assert_eq!(allocation.blocks, vec![8, 9, 10, 11]);
        assert_eq!(allocation.slots, vec![16, 17, 18, 19, 20, 21, 22, 23]);
        assert_eq!(allocation.prefix_len, 0);
        cache.free(allocation.blocks.clone(), allocation.allocation_id);

        let allocation = cache.allocate(8, Some(Arc::new(vec![0, 1, 2, 3]))).unwrap();
        assert_eq!(allocation.blocks, vec![8, 9, 10, 11]);
        assert_eq!(allocation.slots, vec![16, 17, 18, 19, 20, 21, 22, 23]);
        assert_eq!(allocation.prefix_len, 4);
    }

    #[test]
    fn allocator_block_size_non_aligned() {
        let mut cache = RadixAllocator::new(2, 12, None);
        let allocation = cache.allocate(7, Some(Arc::new(vec![0, 1, 2]))).unwrap();
        assert_eq!(allocation.blocks, vec![8, 9, 10, 11]);
        assert_eq!(allocation.slots, vec![16, 17, 18, 19, 20, 21, 22]);
        assert_eq!(allocation.prefix_len, 0);
        cache.free(allocation.blocks.clone(), allocation.allocation_id);

        let allocation = cache.allocate(7, Some(Arc::new(vec![0, 1, 2]))).unwrap();
        assert_eq!(allocation.blocks, vec![8, 9, 10, 11]);
        assert_eq!(allocation.slots, vec![16, 17, 18, 19, 20, 21, 22]);
        assert_eq!(allocation.prefix_len, 2);
    }
620
621
622
623
624
625

    #[test]
    fn allocator_reuses_prefixes() {
        let mut cache = RadixAllocator::new(1, 12, None);
        let allocation = cache.allocate(8, Some(Arc::new(vec![0, 1, 2, 3]))).unwrap();
        assert_eq!(allocation.blocks, vec![4, 5, 6, 7, 8, 9, 10, 11]);
626
        assert_eq!(allocation.blocks, allocation.slots);
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
        assert_eq!(allocation.prefix_len, 0);
        cache.free(allocation.blocks.clone(), allocation.allocation_id);

        let allocation = cache.allocate(8, Some(Arc::new(vec![0, 1, 2, 3]))).unwrap();
        assert_eq!(allocation.blocks, vec![4, 5, 6, 7, 8, 9, 10, 11]);
        assert_eq!(allocation.prefix_len, 4);
    }

    #[test]
    fn allocator_collects_older_prefixes_first() {
        let mut cache = RadixAllocator::new(1, 7, None);
        let allocation1 = cache.allocate(4, Some(Arc::new(vec![0, 1, 2, 3]))).unwrap();
        assert_eq!(allocation1.blocks, vec![3, 4, 5, 6]);
        assert_eq!(allocation1.prefix_len, 0);

        let allocation2 = cache.allocate(2, Some(Arc::new(vec![4, 5]))).unwrap();
        assert_eq!(allocation2.blocks, vec![1, 2]);
        assert_eq!(allocation2.prefix_len, 0);

        cache.free(allocation1.blocks.clone(), allocation1.allocation_id);
        cache.free(allocation2.blocks.clone(), allocation2.allocation_id);

        // We should get the blocks of the first allocation, since they are more recent.
        let allocation3 = cache.allocate(4, Some(Arc::new(vec![6, 7, 8, 9]))).unwrap();
        assert_eq!(allocation3.blocks, vec![3, 4, 5, 6]);
        assert_eq!(allocation3.prefix_len, 0);
    }

    #[test]
    fn allocator_frees_fully_overlapping_prefills() {
        let mut cache = RadixAllocator::new(1, 10, None);
        let allocation1 = cache.allocate(4, Some(Arc::new(vec![0, 1, 2, 3]))).unwrap();
        let allocation2 = cache.allocate(4, Some(Arc::new(vec![0, 1, 2, 3]))).unwrap();

        cache.free(allocation2.blocks.clone(), allocation2.allocation_id);
        cache.free(allocation1.blocks.clone(), allocation1.allocation_id);

        let allocation3 = cache.allocate(4, Some(Arc::new(vec![0, 1, 2, 3]))).unwrap();
        assert_eq!(allocation3.prefix_len, 4);

        // 10 blocks, of which 1 reserved for health checks, 4 for the cached blocks.
        assert_eq!(cache.free_blocks.len(), 5);
    }

    #[test]
    fn allocator_frees_partially_overlapping_prefills() {
        let mut cache = RadixAllocator::new(1, 20, None);
        let allocation1 = cache.allocate(4, Some(Arc::new(vec![0, 1]))).unwrap();
        assert_eq!(allocation1.blocks, vec![16, 17, 18, 19]);
        assert_eq!(allocation1.prefix_len, 0);

        cache.free(allocation1.blocks.clone(), allocation1.allocation_id);

        let allocation2 = cache
            .allocate(8, Some(Arc::new(vec![0, 1, 2, 3, 4, 5])))
            .unwrap();
        assert_eq!(allocation2.blocks, vec![16, 17, 12, 13, 14, 15, 18, 19]);
        assert_eq!(allocation2.prefix_len, 2);

        let allocation3 = cache
            .allocate(8, Some(Arc::new(vec![0, 1, 2, 3, 6, 7])))
            .unwrap();
        assert_eq!(allocation3.blocks, vec![16, 17, 6, 7, 8, 9, 10, 11]);
        assert_eq!(allocation3.prefix_len, 2);

        cache.free(allocation3.blocks.clone(), allocation3.allocation_id);
        cache.free(allocation2.blocks.clone(), allocation2.allocation_id);

        // 20 blocks, of which 1 reserved for health checks, 6 for allocation3, 2 for allocation2.
        assert_eq!(cache.free_blocks.len(), 11);

        let allocation4 = cache
            .allocate(6, Some(Arc::new(vec![0, 1, 2, 3, 4, 5])))
            .unwrap();
        assert_eq!(allocation4.blocks, vec![16, 17, 6, 7, 14, 15]);
        assert_eq!(allocation4.prefix_len, 6);
        assert_eq!(cache.free_blocks.len(), 11);

        let allocation5 = cache
            .allocate(6, Some(Arc::new(vec![0, 1, 2, 3, 6, 7])))
            .unwrap();
        assert_eq!(allocation5.blocks, vec![16, 17, 6, 7, 8, 9]);
        assert_eq!(allocation5.prefix_len, 6);
        assert_eq!(cache.free_blocks.len(), 11);
    }

    #[test]
    fn trie_insertions_have_correct_prefix_len() {
715
        let mut trie = RadixTrie::new(1);
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

        assert_eq!(trie.insert(&[0, 1, 2], &[0, 1, 2]).unwrap(), 0);

        // Already exists.
        assert_eq!(trie.insert(&[0, 1, 2], &[0, 1, 2]).unwrap(), 3);

        // Completely new at root-level
        assert_eq!(trie.insert(&[1, 2, 3], &[1, 2, 3]).unwrap(), 0);

        // Contains full prefix, but longer.
        assert_eq!(trie.insert(&[0, 1, 2, 3, 4], &[0, 1, 2, 3, 4]).unwrap(), 3);

        // Shares partial prefix, we need a split.
        assert_eq!(
            trie.insert(&[0, 1, 2, 3, 5, 6, 7], &[0, 1, 2, 3, 5, 6, 7])
                .unwrap(),
            4
        );
    }

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
    #[test]
    fn trie_insertions_block_size() {
        let mut trie = RadixTrie::new(2);

        assert_eq!(trie.insert(&[0, 1, 2, 3], &[0, 1]).unwrap(), 0);

        // Already exists.
        // But needs to be block_size aligned
        assert_eq!(trie.insert(&[0, 1, 2, 3], &[0, 1]).unwrap(), 4);

        // Completely new at root-level
        assert_eq!(trie.insert(&[1, 2, 3, 4], &[1, 2]).unwrap(), 0);

        // Contains full prefix, but longer.
        assert_eq!(trie.insert(&[0, 1, 2, 3, 4, 5], &[0, 1, 2]).unwrap(), 4);

        // Shares partial prefix, we need a split.
        assert_eq!(
            trie.insert(&[0, 1, 3, 4, 5, 6, 7, 8], &[0, 1, 2, 3])
                .unwrap(),
            2
        );
    }

760
761
    #[test]
    fn trie_get_returns_correct_blocks() {
762
        let mut trie = RadixTrie::new(1);
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
        trie.insert(&[0, 1, 2], &[0, 1, 2]).unwrap();
        trie.insert(&[1, 2, 3], &[1, 2, 3]).unwrap();
        trie.insert(&[0, 1, 2, 3, 4], &[0, 1, 2, 3, 4]).unwrap();
        trie.insert(&[0, 1, 2, 3, 5, 6, 7], &[0, 1, 2, 3, 5, 6, 7])
            .unwrap();

        let mut blocks = Vec::new();
        trie.find(&[0], &mut blocks);
        assert_eq!(blocks, vec![0]);

        blocks.clear();
        trie.find(&[0, 1, 2], &mut blocks);
        assert_eq!(blocks, vec![0, 1, 2]);

        blocks.clear();
        trie.find(&[1, 2, 3], &mut blocks);
        assert_eq!(blocks, vec![1, 2, 3]);

        blocks.clear();
        trie.find(&[0, 1, 2, 3], &mut blocks);
        assert_eq!(blocks, vec![0, 1, 2, 3]);

        blocks.clear();
        trie.find(&[0, 1, 2, 3, 4], &mut blocks);
        assert_eq!(blocks, vec![0, 1, 2, 3, 4]);

        blocks.clear();
        trie.find(&[0, 1, 2, 3, 5], &mut blocks);
        assert_eq!(blocks, vec![0, 1, 2, 3, 5]);
    }

    #[test]
    fn trie_evict_removes_correct_blocks() {
796
        let mut trie = RadixTrie::new(1);
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
        trie.insert(&[0, 1, 2], &[0, 1, 2]).unwrap();
        trie.insert(&[0, 1, 2, 3, 5, 6, 7], &[0, 1, 2, 3, 5, 6, 7])
            .unwrap();
        trie.insert(&[0, 1, 2, 3, 4], &[0, 1, 2, 3, 4]).unwrap();
        trie.insert(&[1, 2, 3], &[1, 2, 3]).unwrap();

        let mut blocks = Vec::new();

        // Remove less than the leave blocks.
        assert_eq!(trie.evict(1), vec![7]);
        trie.find(&[0, 1, 2, 3, 5, 6, 7], &mut blocks);
        assert_eq!(blocks, vec![0, 1, 2, 3, 5, 6]);

        // Refresh other leaf.
        trie.find(&[0, 1, 2, 3, 4], &mut blocks);
        trie.find(&[1, 2, 3], &mut blocks);

        // Remove the leave blocks exactly.
        assert_eq!(trie.evict(2), vec![5, 6]);
        blocks.clear();
        trie.find(&[0, 1, 2, 3, 5, 6, 7], &mut blocks);
        assert_eq!(blocks, vec![0, 1, 2, 3]);

        trie.find(&[1, 2, 3], &mut blocks);

        // Remove more than the leave blocks.
        assert_eq!(trie.evict(3), vec![4, 3, 2]);
        blocks.clear();
        trie.find(&[0, 1, 2, 3, 4], &mut blocks);
        assert_eq!(blocks, vec![0, 1]);

        // Clear out the whole trie.
        assert_eq!(trie.evict(10), vec![1, 2, 3, 0, 1]);
    }
}