causal_lm.py 14.9 KB
Newer Older
1
2
import torch

3
from dataclasses import dataclass
4
from transformers import AutoTokenizer, AutoModelForCausalLM
OlivierDehaene's avatar
OlivierDehaene committed
5
from typing import Optional, Tuple, List, Type
6
7

from text_generation.models import Model
8
9
10
11
12
13
14
15
16
from text_generation.models.types import GeneratedText
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria


@dataclass
class CausalLMBatch:
    batch_id: int
    requests: List[generate_pb2.Request]
OlivierDehaene's avatar
OlivierDehaene committed
17
18
19
20
21
22
23

    # Decoder values
    input_ids: torch.Tensor
    attention_mask: torch.Tensor
    past_key_values: Optional[List[Tuple]]

    # All tokens
24
    all_input_ids: List[torch.Tensor]
OlivierDehaene's avatar
OlivierDehaene committed
25
26
27
28
29

    # Lengths of all generations present in the batch
    input_lengths: List[int]

    # Generation helpers
30
31
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]
OlivierDehaene's avatar
OlivierDehaene committed
32
33

    # Metadata used for padding
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    size: int
    max_sequence_length: int

    def to_pb(self):
        return generate_pb2.Batch(
            id=self.batch_id,
            requests=self.requests,
            size=self.size,
        )

    @classmethod
    def from_pb(
        cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
    ) -> "CausalLMBatch":
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
OlivierDehaene's avatar
OlivierDehaene committed
51
        input_lengths = []
52
53
54
55

        # Parse batch
        for r in pb.requests:
            inputs.append(r.inputs)
OlivierDehaene's avatar
OlivierDehaene committed
56
            input_lengths.append(r.input_length)
57
58
59
60
61
62
63
64
65
66
67
68
69
70
            next_token_choosers.append(
                NextTokenChooser(
                    temperature=r.parameters.temperature,
                    top_k=r.parameters.top_k,
                    top_p=r.parameters.top_p,
                    do_sample=r.parameters.do_sample,
                )
            )
            stopping_criterias.append(
                StoppingCriteria(
                    eos_token_id=tokenizer.eos_token_id, max_new_tokens=r.max_new_tokens
                )
            )

OlivierDehaene's avatar
OlivierDehaene committed
71
        tokenized_inputs = tokenizer(
72
73
            inputs, return_tensors="pt", padding=True, pad_to_multiple_of=8
        ).to(device)
OlivierDehaene's avatar
OlivierDehaene committed
74
        all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)
75
76
77
78

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
OlivierDehaene's avatar
OlivierDehaene committed
79
80
81
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
            past_key_values=None,
82
            all_input_ids=all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
83
            input_lengths=input_lengths,
84
85
86
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=pb.size,
OlivierDehaene's avatar
OlivierDehaene committed
87
            max_sequence_length=max(input_lengths),
88
89
90
91
92
93
94
95
96
97
        )

    @classmethod
    def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
        # Used for padding
        total_batch_size = sum(batch.size for batch in batches)
        max_sequence_length = max(batch.max_sequence_length for batch in batches)

        # Batch attributes
        requests = []
OlivierDehaene's avatar
OlivierDehaene committed
98
        input_lengths = []
99
100
101
102
        all_input_ids = []
        next_token_choosers = []
        stopping_criterias = []

OlivierDehaene's avatar
OlivierDehaene committed
103
104
105
106
107
        # Batch tensors
        input_ids = None
        attention_mask = None
        past_key_values = []

108
109
110
111
112
        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
OlivierDehaene's avatar
OlivierDehaene committed
113
            input_lengths.extend(batch.input_lengths)
114
115
116
117
118
119
120
121
            all_input_ids.extend(batch.all_input_ids)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Slicing end index for this batch
            end_index = start_index + batch.size

            # We only concatenate batches that did at least one step
OlivierDehaene's avatar
OlivierDehaene committed
122
            if batch.input_ids.shape[1] > 1:
123
124
                raise ValueError("Batch input_ids should be of shape (batch_size, 1)")

OlivierDehaene's avatar
OlivierDehaene committed
125
126
127
128
129
            # Create empty tensor
            # input_ids is always of shape [batch_size, 1]
            # We do not need to pad it
            if input_ids is None:
                input_ids = torch.empty(
130
                    (total_batch_size, 1),
OlivierDehaene's avatar
OlivierDehaene committed
131
132
                    dtype=batch.input_ids.dtype,
                    device=batch.input_ids.device,
133
                )
OlivierDehaene's avatar
OlivierDehaene committed
134
135
136
137
138
139
            # Copy to correct indices
            input_ids[start_index:end_index] = batch.input_ids

            # Create padded tensor
            if attention_mask is None:
                attention_mask = torch.zeros(
140
                    (total_batch_size, max_sequence_length),
OlivierDehaene's avatar
OlivierDehaene committed
141
142
                    dtype=batch.attention_mask.dtype,
                    device=batch.attention_mask.device,
143
144
145
                )

            # We need to slice the attention mask to remove padding from previous steps
OlivierDehaene's avatar
OlivierDehaene committed
146
            attention_mask[
147
                start_index:end_index, -batch.max_sequence_length :
OlivierDehaene's avatar
OlivierDehaene committed
148
            ] = batch.attention_mask[:, -batch.max_sequence_length :]
149

OlivierDehaene's avatar
OlivierDehaene committed
150
            for j, past in enumerate(batch.past_key_values):
151
152
                past_keys, past_values = past

153
                # Shenanigans to get dimensions because BLOOM outputs a past with a different shape
154
155
156
157
158
159
160
161
162
163
164
165
                # BLOOM Keys:   [batch_size * num_heads, head_dim, seq_length]
                # BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
                past_keys = past_keys.view(batch.size, -1, *past_keys.shape[-2:])
                past_values = past_values.view(batch.size, -1, *past_values.shape[-2:])

                _, num_heads, head_dim, padded_sequence_length = past_keys.shape

                padded_past_keys_shape = (
                    total_batch_size,
                    num_heads,
                    head_dim,
                    max_sequence_length - 1,
166
167
                )

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
                # head_dim is last for BLOOM
                if past_values.shape[-1] == head_dim:
                    past_values_head_dim_last = True
                    padded_past_values_shape = (
                        total_batch_size,
                        num_heads,
                        max_sequence_length - 1,
                        head_dim,
                    )
                elif past_values.shape[-2] == head_dim:
                    past_values_head_dim_last = False
                    padded_past_values_shape = padded_past_keys_shape
                else:
                    raise ValueError(
                        f"past_values shape {past_values.shape} is not valid"
                    )

185
                # This will run only once per layer
OlivierDehaene's avatar
OlivierDehaene committed
186
                if j == len(past_key_values):
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
                    padded_past_keys = torch.zeros(
                        padded_past_keys_shape,
                        dtype=past_keys.dtype,
                        device=past_keys.device,
                    )
                    padded_past_values = torch.zeros(
                        padded_past_values_shape,
                        dtype=past_values.dtype,
                        device=past_values.device,
                    )
                    past_key_values.append((padded_past_keys, padded_past_values))

                # We slice the past keys and values to remove the padding from previous batches
                past_key_values[j][0][
                    start_index:end_index, :, :, -(batch.max_sequence_length - 1) :
                ] = past_keys[:, :, :, -(batch.max_sequence_length - 1) :]

                if past_values_head_dim_last:
                    past_key_values[j][1][
                        start_index:end_index,
                        :,
                        -(batch.max_sequence_length - 1) :,
                        :,
                    ] = past_values[:, :, -(batch.max_sequence_length - 1) :, :]
                else:
                    past_key_values[j][1][
                        start_index:end_index,
                        :,
                        :,
                        -(batch.max_sequence_length - 1) :,
                    ] = past_values[:, :, :, -(batch.max_sequence_length - 1) :]
218
219
220
221
222
223
224

            start_index += batch.size

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            input_ids=input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
225
226
            attention_mask=attention_mask,
            past_key_values=past_key_values,
227
            all_input_ids=all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
228
            input_lengths=input_lengths,
229
230
231
232
233
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=total_batch_size,
            max_sequence_length=max_sequence_length,
        )
234
235
236


class CausalLM(Model):
OlivierDehaene's avatar
OlivierDehaene committed
237
    def __init__(self, model_name: str, quantize=False):
238
239
240
241
242
243
244
245
246
247
248
249
250
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
        else:
            device = torch.device("cpu")
            dtype = torch.float32

        tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
        tokenizer.add_special_tokens({"pad_token": "[PAD]"})
        self.model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=dtype,
            device_map="auto" if torch.cuda.is_available() else None,
OlivierDehaene's avatar
OlivierDehaene committed
251
            load_in_8bit=quantize,
252
253
        ).eval()

254
255
256
257
258
259
260
261
262
        super(CausalLM, self).__init__(
            tokenizer=tokenizer,
            num_heads=self.model.config.num_attention_heads,
            device=device,
        )

    @property
    def batch_type(self) -> Type[CausalLMBatch]:
        return CausalLMBatch
263
264

    def forward(
265
        self, input_ids, attention_mask, past_key_values: Optional = None
266
267
268
269
270
271
272
273
274
    ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
        # Model Forward
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=True,
        )
        return outputs.logits, outputs.past_key_values
275
276
277
278
279
280
281
282
283

    def generate_token(
        self, batch: CausalLMBatch
    ) -> Tuple[List[GeneratedText], Optional[CausalLMBatch]]:
        # For some reason, inference_mode does not work well with GLOO which we use on CPU
        context_manager = (
            torch.no_grad if self.device.type == "cpu" else torch.inference_mode
        )
        with context_manager():
OlivierDehaene's avatar
OlivierDehaene committed
284
285
286
            logits, past = self.forward(
                batch.input_ids, batch.attention_mask, batch.past_key_values
            )
287
288
289
290

        # List of indices to cache
        next_batch_keep_indices = []

OlivierDehaene's avatar
OlivierDehaene committed
291
292
        # New values for next forward
        next_batch_input_lengths = []
293
294
295
        next_batch_input_ids = []
        next_batch_all_input_ids = []

OlivierDehaene's avatar
OlivierDehaene committed
296
        # Metadata
297
298
299
300
301
302
303
304
305
        next_batch_size = 0
        next_batch_max_sequence_length = 0

        # Finished requests
        generated_texts: List[GeneratedText] = []

        # Zipped iterator
        iterator = zip(
            batch.requests,
OlivierDehaene's avatar
OlivierDehaene committed
306
            batch.input_lengths,
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            logits,
            next_token_chooser,
            stopping_criteria,
            all_tokens,
        ) in enumerate(iterator):
            # Select next token
            next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])

            # Append next token to all tokens
            all_tokens = torch.cat([all_tokens, next_token])

            # Evaluate stopping criteria
            if stopping_criteria(all_tokens):
                # Decode all tokens
                output = self.tokenizer.decode(
                    all_tokens.squeeze(-1), skip_special_tokens=True
                )
                # Add to the list of finished generations with the original request
                generated_texts.append(
                    GeneratedText(request, output, stopping_criteria.current_tokens)
                )
            # add to the next batch
            else:
                next_batch_keep_indices.append(i)
                next_batch_input_ids.append(next_token)
                next_batch_all_input_ids.append(all_tokens)
                next_batch_size += 1
                new_input_length = input_length + 1
OlivierDehaene's avatar
OlivierDehaene committed
345
                next_batch_input_lengths.append(new_input_length)
346
347
348
349
350
351
352
353
                next_batch_max_sequence_length = max(
                    next_batch_max_sequence_length, new_input_length
                )

        # We finished all generations in the batch; there is no next batch
        if not next_batch_keep_indices:
            return generated_texts, None

OlivierDehaene's avatar
OlivierDehaene committed
354
355
356
        next_batch_input_ids = torch.cat(next_batch_input_ids, dim=0)
        # If we finished at least one generation, we need to evict the indices of the generations that finished
        # from the values of the next batch
357
358
        if generated_texts:
            # Apply indices to attention mask, past key values and other items that need to be cached
OlivierDehaene's avatar
OlivierDehaene committed
359
            next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]
360
            # Force past to be of dim [batch_size, num_heads, ...] for easy indexing
OlivierDehaene's avatar
OlivierDehaene committed
361
            next_batch_past_key_values = [
362
363
364
365
366
367
368
369
370
371
372
373
374
375
                [
                    t.view(-1, self.num_heads, *t.shape[-2:])[next_batch_keep_indices]
                    for t in layer
                ]
                for layer in past
            ]
            next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
            next_batch_next_token_choosers = [
                batch.next_token_choosers[i] for i in next_batch_keep_indices
            ]
            next_batch_stopping_criterias = [
                batch.stopping_criterias[i] for i in next_batch_keep_indices
            ]
        else:
OlivierDehaene's avatar
OlivierDehaene committed
376
377
            next_batch_attention_mask = batch.attention_mask
            next_batch_past_key_values = past
378
379
380
381
382
            next_batch_requests = batch.requests
            next_batch_next_token_choosers = batch.next_token_choosers
            next_batch_stopping_criterias = batch.stopping_criterias

        # Update attention_mask with padding as we added a new token to input_ids
OlivierDehaene's avatar
OlivierDehaene committed
383
        next_batch_attention_mask = torch.cat(
384
            [
OlivierDehaene's avatar
OlivierDehaene committed
385
                next_batch_attention_mask,
386
387
388
389
390
391
392
393
394
                torch.ones((next_batch_size, 1)).to(self.device),
            ],
            dim=1,
        )

        next_batch = CausalLMBatch(
            batch_id=batch.batch_id,
            requests=next_batch_requests,
            input_ids=next_batch_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
395
396
            attention_mask=next_batch_attention_mask,
            past_key_values=next_batch_past_key_values,
397
            all_input_ids=next_batch_all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
398
            input_lengths=next_batch_input_lengths,
399
400
401
402
403
404
            next_token_choosers=next_batch_next_token_choosers,
            stopping_criterias=next_batch_stopping_criterias,
            size=next_batch_size,
            max_sequence_length=next_batch_max_sequence_length,
        )
        return generated_texts, next_batch