flash_neox.py 21.9 KB
Newer Older
1
2
3
import torch
import torch.distributed

4
5
from torch.nn import functional as F

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from accelerate import init_empty_weights
from dataclasses import dataclass
from opentelemetry import trace
from safetensors import safe_open
from transformers import AutoTokenizer, PreTrainedTokenizerBase, AutoConfig
from typing import Optional, Tuple, List, Type, Union

from text_generation_server.models import Model
from text_generation_server.models.flash_neox_modeling import (
    FlashGPTNeoXForCausalLM,
    TensorParallelEmbedding,
    TensorParallelRowLinear,
    TensorParallelColumnLinear,
)
from text_generation_server.models.types import (
    Batch,
    PrefillTokens,
    Generation,
    GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import (
    NextTokenChooser,
    StoppingCriteria,
    Sampling,
    initialize_torch_distributed,
    weight_files,
)

tracer = trace.get_tracer(__name__)


@dataclass
class FlashNeoXBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]

    # Decoder values
    input_ids: torch.Tensor
    position_ids: torch.Tensor
    # cumulative sequence lengths
    cu_seqlens: torch.Tensor
    max_seqlen: int
    past_key_values: Optional[torch.Tensor]

    # All tokens
    all_input_ids: List[List[int]]
53
    all_input_ids_tensor: List[torch.Tensor]
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

    # Lengths of all generations present in the batch
    input_lengths: List[int]

    # Generation helpers
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]

    def to_pb(self) -> generate_pb2.Batch:
        return generate_pb2.Batch(
            id=self.batch_id, requests=self.requests, size=len(self)
        )

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
    ) -> "CausalLMBatch":
        input_ids = []
        position_ids = []
        cu_seqlens = [0]
        max_seqlen = 0

        input_lengths = []
        all_input_ids = []
81
        all_input_ids_tensor = []
82
83
84
85
86
87
88
89
90

        next_token_choosers = []
        stopping_criterias = []

        # Cumulative length
        cumulative_length = 0

        # Parse batch
        for r in pb.requests:
91
            tokenized_input = tokenizer(r.inputs)["input_ids"]
92
93
94
            input_length = len(tokenized_input)
            max_seqlen = max(max_seqlen, input_length)
            input_lengths.append(input_length)
95
96
97
98
            all_input_ids.append(tokenized_input)

            tokenized_input = torch.tensor(tokenized_input, device=device)
            input_ids.append(tokenized_input)
99
100
101
102
103
104
105
106

            # Position ids
            position_ids.append(torch.arange(0, input_length, dtype=torch.int32))

            # Add cumulative lengths of all previous inputs
            cu_seqlens.append(cumulative_length + input_length)

            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
107
108
109
110
111
112
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
            all_input_ids_tensor.append(
                F.pad(tokenized_input, (0, stopping_criteria.max_new_tokens))
113
114
115
116
117
            )

            # Update
            cumulative_length += input_length

118
        input_ids = torch.concat(input_ids)
119
120
121
122
123
124
125
126
127
128
129
130
131
        position_ids = torch.concat(position_ids)
        cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32)

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            past_key_values=None,
            input_lengths=input_lengths,
            all_input_ids=all_input_ids,
132
            all_input_ids_tensor=all_input_ids_tensor,
133
134
135
136
137
138
139
140
141
142
143
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
        )

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
        # Batch attributes
        requests = []
        input_lengths = []
        all_input_ids = []
144
        all_input_ids_tensor = []
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        next_token_choosers = []
        stopping_criterias = []

        # Batch tensors
        input_ids = []
        position_ids = []
        cu_seqlens = [torch.tensor([0], dtype=torch.int32)]
        max_seqlen = 0
        past_key_values = []

        # Cumulative length
        cumulative_length = torch.tensor(0)

        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
            input_lengths.extend(batch.input_lengths)
            all_input_ids.extend(batch.all_input_ids)
162
            all_input_ids_tensor.extend(batch.all_input_ids_tensor)
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Add cumulative lengths of all previous inputs
            cu_seqlens.append(batch.cu_seqlens[1:] + cumulative_length)

            input_ids.append(batch.input_ids)
            position_ids.append(batch.position_ids)
            past_key_values.append(batch.past_key_values)

            max_seqlen = max(max_seqlen, batch.max_seqlen)

            # Update
            cumulative_length += batch.cu_seqlens[-1]

        input_ids = torch.concat(input_ids)
        position_ids = torch.concat(position_ids)
        # Concat on dim=1 as first dim represents the model layers
        past_key_values = torch.concat(past_key_values, dim=1)
        cu_seqlens = torch.concat(cu_seqlens)

        return FlashNeoXBatch(
            batch_id=batches[0].batch_id,
            requests=requests,
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            all_input_ids=all_input_ids,
194
            all_input_ids_tensor=all_input_ids_tensor,
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
        )

    def __len__(self):
        return len(self.requests)


class FlashNeoX(Model):
    def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
        else:
            raise NotImplementedError("FlashNeoX is only available on GPU")

        if quantize:
            raise NotImplementedError("FlashNeoX does not support quantization")

        tokenizer = AutoTokenizer.from_pretrained(
            model_id, revision=revision, padding_side="left"
        )
        self.model = (
            FlashGPTNeoXForCausalLM.from_pretrained(
                model_id,
                revision=revision,
                torch_dtype=dtype,
            )
            .eval()
            .cuda()
        )
        tokenizer.pad_token_id = (
            self.model.config.pad_token_id
            if self.model.config.pad_token_id is not None
            else self.model.config.eos_token_id
        )

        super(FlashNeoX, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )

    @property
    def batch_type(self) -> Type[FlashNeoXBatch]:
        return FlashNeoXBatch

    def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
        return self.tokenizer.decode(
            generated_ids, skip_special_tokens=True, cleanup_tokenization_spaces=False
        )

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        cu_seqlens: torch.Tensor,
        max_s: int,
        past_key_values: Optional = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Model Forward
        return self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_s=max_s,
            past_key_values=past_key_values,
        )

    @tracer.start_as_current_span("generate_token")
    def generate_token(
        self, batch: FlashNeoXBatch
    ) -> Tuple[List[Generation], Optional[FlashNeoXBatch]]:
        # Better to send to device here to avoid device issues in concatenate
        position_ids = batch.position_ids.to(self.device, non_blocking=True)
269
        cu_seqlens = batch.cu_seqlens.to(self.device)
270
271

        out, present = self.forward(
272
            batch.input_ids,
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
            position_ids,
            cu_seqlens,
            batch.max_seqlen,
            batch.past_key_values,
        )

        # List of indices to cache
        next_batch_keep_indices = []

        # New values for next forward
        next_batch_input_ids = []
        next_batch_position_ids = []
        next_batch_cu_seqlens = [0]
        next_batch_max_seqlen = 0
        next_batch_past_key_values = []
        next_batch_input_lengths = []
        next_batch_all_input_ids = []
290
        next_batch_all_input_ids_tensor = []
291
292
293
294
295
296
297
298
299
300
301
302
303
304

        # Cumulative length
        cumulative_length = 0

        # Results
        generations: List[Generation] = []

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
305
            batch.all_input_ids_tensor,
306
307
308
309
310
311
312
313
314
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            next_token_chooser,
            stopping_criteria,
            all_input_ids,
315
            all_input_ids_tensor,
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        ) in enumerate(iterator):
            # Indexing metadata
            start_index = cumulative_length
            end_index = cumulative_length + input_length

            if batch.past_key_values is None:
                # Prefill mode
                # out is of shape [cumulative_sequence_lengths, vocab_size]
                logits = out[start_index:end_index]
            else:
                # Decode mode
                # out is of shape [batch_size, vocab_size]
                logits = out[i].unsqueeze(0)

            # Select next token
331
332
333
            next_token_id, logprobs = next_token_chooser(
                all_input_ids_tensor[None, :input_length], logits
            )
334
335
336
337
338
            next_token_id_squeezed = next_token_id.squeeze()
            next_token_id_item = next_token_id_squeezed.item()

            # Append next token to all tokens
            all_input_ids.append(next_token_id_item)
339
            all_input_ids_tensor[input_length] = next_token_id_item
340
341
342
            new_input_length = input_length + 1

            # Generated token
343
            next_token_logprob = logprobs[-1, next_token_id_item]
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
            next_token_text = self.decode_token(
                next_token_id_item,
            )

            # Evaluate stopping criteria
            stop, reason = stopping_criteria(
                next_token_id_item,
                next_token_text,
            )

            if stop:
                # Decode generated tokens
                output_text = self.decode(
                    all_input_ids[-stopping_criteria.current_tokens :]
                )
                # Get seed
                if isinstance(next_token_chooser.choice, Sampling):
                    seed = next_token_chooser.choice.seed
                else:
                    seed = None

                generated_text = GeneratedText(
                    output_text, stopping_criteria.current_tokens, reason, seed
                )
            else:
                # Keep request in the batch
                next_batch_keep_indices.append(i)
                generated_text = None

                # Get sequence present
                seq_present = present[:, start_index:end_index]
                # Pad it for next iter attention
                past = torch.nn.functional.pad(seq_present, (0, 0, 0, 0, 0, 0, 0, 1))
                next_batch_past_key_values.append(past)

                next_batch_input_ids.append(next_token_id)
                next_batch_position_ids.append(input_length)
                # Cumulative sum
                next_batch_cu_seqlens.append(
                    next_batch_cu_seqlens[-1] + new_input_length
                )
                next_batch_input_lengths.append(new_input_length)
                next_batch_all_input_ids.append(all_input_ids)
387
                next_batch_all_input_ids_tensor.append(all_input_ids_tensor)
388
389
390
391
392
393
                next_batch_max_seqlen = max(next_batch_max_seqlen, new_input_length)

            # Prefill
            if stopping_criteria.current_tokens == 1:
                # Remove generated token to only have prefill and add nan for first prompt token
                prefill_logprobs = [float("nan")] + logprobs.gather(
394
                    1, all_input_ids_tensor[1:input_length].unsqueeze(1)
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
                ).squeeze(1)[:-1].tolist()
                prefill_token_ids = all_input_ids[:-1]
                prefill_texts = self.tokenizer.batch_decode(
                    prefill_token_ids,
                    clean_up_tokenization_spaces=False,
                    skip_special_tokens=False,
                )
                prefill_tokens = PrefillTokens(
                    prefill_token_ids, prefill_logprobs, prefill_texts
                )
            else:
                prefill_tokens = None

            generation = Generation(
                request.id,
                prefill_tokens,
                next_token_id_item,
                next_token_logprob,
                next_token_text,
                next_token_id_item in self.all_special_ids,
                generated_text,
            )

            generations.append(generation)
            cumulative_length += input_length

        # We finished all generations in the batch; there is no next batch
        if not next_batch_keep_indices:
            return generations, None

        # If we finished at least one generation, we need to evict the indices of the generations that finished
        # from the values of the next batch
        if len(next_batch_keep_indices) != len(batch):
            # Apply indices to requests, token_choosers and stopping_criterias that need to be cached
            next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
            next_batch_next_token_choosers = [
                batch.next_token_choosers[i] for i in next_batch_keep_indices
            ]
            next_batch_stopping_criterias = [
                batch.stopping_criterias[i] for i in next_batch_keep_indices
            ]
        else:
            next_batch_requests = batch.requests
            next_batch_next_token_choosers = batch.next_token_choosers
            next_batch_stopping_criterias = batch.stopping_criterias

        # Create final next batch tensors
        next_batch_position_ids = torch.tensor(
            next_batch_position_ids, dtype=torch.int32
        )
        next_batch_cu_seqlens = torch.tensor(next_batch_cu_seqlens, dtype=torch.int32)
        if len(next_batch_keep_indices) > 1:
447
            next_batch_input_ids = torch.concat(next_batch_input_ids).squeeze(1)
448
449
            next_batch_past_key_values = torch.concat(next_batch_past_key_values, dim=1)
        else:
450
            next_batch_input_ids = next_batch_input_ids[0].view(1)
451
452
            next_batch_past_key_values = next_batch_past_key_values[0]

453
454
        print(next_batch_input_ids.shape)

455
456
457
458
459
460
461
462
463
464
        next_batch = FlashNeoXBatch(
            batch_id=batch.batch_id,
            requests=next_batch_requests,
            input_ids=next_batch_input_ids,
            position_ids=next_batch_position_ids,
            cu_seqlens=next_batch_cu_seqlens,
            max_seqlen=next_batch_max_seqlen,
            past_key_values=next_batch_past_key_values,
            input_lengths=next_batch_input_lengths,
            all_input_ids=next_batch_all_input_ids,
465
            all_input_ids_tensor=next_batch_all_input_ids_tensor,
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
            next_token_choosers=next_batch_next_token_choosers,
            stopping_criterias=next_batch_stopping_criterias,
        )
        return generations, next_batch


class FlashNeoXSharded(FlashNeoX):
    def __init__(
        self, model_id: str, revision: Optional[str] = None, quantize: bool = False
    ):
        self.process_group, self.rank, self.world_size = initialize_torch_distributed()
        self.master = self.rank == 0
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{self.rank}")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
        else:
            raise NotImplementedError("FlashNeoX is only available on GPU")

        if quantize:
            raise NotImplementedError("FlashNeoX does not support quantization")

        tokenizer = AutoTokenizer.from_pretrained(
            model_id, revision=revision, padding_side="left"
        )

        config = AutoConfig.from_pretrained(
            model_id, revision=revision, tp_parallel=True
        )

        torch.distributed.barrier(group=self.process_group)
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")

        with init_empty_weights():
            model = FlashGPTNeoXForCausalLM(config)

        torch.distributed.barrier(group=self.process_group)
        self.load_weights(
            model,
            filenames,
            quantize=quantize,
            device=device,
            rank=self.rank,
            world_size=self.world_size,
        )
        self.model = model.eval().to(dtype)
        torch.distributed.barrier(group=self.process_group)
        super(FlashNeoX, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )

    @staticmethod
    def load_weights(
        model,
        filenames: List[str],
        quantize: bool,
        device: torch.device,
        rank: int,
        world_size: int,
    ):
        parameters = dict(model.named_parameters())
        for file in filenames:
            with safe_open(
                file, framework="pt", device=str(device) if not quantize else "cpu"
            ) as f:
                for name in f.keys():
                    module_name, param_name = name.rsplit(".", 1)
                    module = model.get_submodule(module_name)

                    current_parameter_tensor = parameters.get(name, None)

                    slice_ = f.get_slice(name)

                    if isinstance(module, TensorParallelColumnLinear):
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    elif isinstance(module, TensorParallelRowLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[1]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[:, start:stop]
                        else:
                            tensor = slice_[:]
                            # XXX: Hack for Rowlinear to add the bias only once.
                            if rank != 0:
                                tensor = torch.zeros_like(tensor)
                    elif isinstance(module, TensorParallelEmbedding):
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    elif name == "embed_out.weight" and model.gpt_neox.tp_embeddings:
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    else:
                        try:
                            tensor = slice_[:]
                        except:
                            tensor = f.get_tensor(name)

                    if (
                        current_parameter_tensor is not None
                        and current_parameter_tensor.shape != tensor.shape
                    ):
                        raise ValueError(
                            f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
                        )

                    tensor = tensor.contiguous()

                    if current_parameter_tensor is not None:
                        module._parameters[param_name] = tensor
                    else:
                        module._buffers[param_name] = tensor

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        cu_seqlens: torch.Tensor,
        max_s: int,
        past_key_values: Optional = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if self.model.gpt_neox.tp_embeddings:
            logits, present = self.model.forward(
                input_ids=input_ids,
                position_ids=position_ids,
                cu_seqlens=cu_seqlens,
                max_s=max_s,
                past_key_values=past_key_values,
            )

            # Logits are sharded, so we need to gather them
            world_logits = [torch.empty_like(logits) for _ in range(self.world_size)]
            torch.distributed.all_gather(world_logits, logits, group=self.process_group)
            world_logits = torch.cat(world_logits, dim=1)

            return world_logits, present
        # While the model itself is sharded, the embeddings might not as they might not be dividable by num-shard
        else:
            return super(FlashNeoXSharded, self).forward(
                input_ids, position_ids, cu_seqlens, max_s, past_key_values
            )