mod.rs 11.8 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
3
// pub(crate) mod v2;
mod chat_template;
pub mod tool_grammar;
OlivierDehaene's avatar
OlivierDehaene committed
4
5

use crate::validation::{ValidGenerateRequest, Validation, ValidationError};
drbh's avatar
drbh committed
6
use crate::Tool;
OlivierDehaene's avatar
OlivierDehaene committed
7
use crate::{
Nicolas Patry's avatar
Nicolas Patry committed
8
9
    ChatTemplateVersions, FinishReason, GenerateRequest, HubProcessorConfig, HubTokenizerConfig,
    Message, PrefillToken, Token,
OlivierDehaene's avatar
OlivierDehaene committed
10
};
Nicolas Patry's avatar
Nicolas Patry committed
11
12
use async_trait::async_trait;
use chat_template::ChatTemplate;
OlivierDehaene's avatar
OlivierDehaene committed
13
use futures::future::try_join_all;
Nicolas Patry's avatar
Nicolas Patry committed
14
15
use minijinja::ErrorKind;
use std::sync::atomic::{AtomicBool, Ordering};
OlivierDehaene's avatar
OlivierDehaene committed
16
17
18
19
20
21
22
23
use std::sync::Arc;
use thiserror::Error;
use tokio::sync::{OwnedSemaphorePermit, Semaphore, TryAcquireError};
use tokio::time::Instant;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tokio_stream::StreamExt;
use tracing::instrument;

Nicolas Patry's avatar
Nicolas Patry committed
24
25
#[async_trait]
pub trait Backend {
OlivierDehaene's avatar
OlivierDehaene committed
26
27
28
    fn schedule(
        &self,
        request: ValidGenerateRequest,
Nicolas Patry's avatar
Nicolas Patry committed
29
30
31
    ) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError>;

    async fn health(&self, current_health: bool) -> bool;
OlivierDehaene's avatar
OlivierDehaene committed
32
33
34
35
36
37
38
}

/// Inference struct
#[derive(Clone)]
pub struct Infer {
    /// Validation
    validation: Validation,
Nicolas Patry's avatar
Nicolas Patry committed
39
40
    /// Request backend
    backend: Arc<dyn Backend + Send + Sync>,
OlivierDehaene's avatar
OlivierDehaene committed
41
42
43
44
    /// Chat template
    chat_template: Option<ChatTemplate>,
    /// Inference limit
    limit_concurrent_requests: Arc<Semaphore>,
Nicolas Patry's avatar
Nicolas Patry committed
45
46
    /// Backend health
    backend_health: Arc<AtomicBool>,
OlivierDehaene's avatar
OlivierDehaene committed
47
48
49
50
51
}

impl Infer {
    #[allow(clippy::too_many_arguments)]
    pub(crate) fn new(
Nicolas Patry's avatar
Nicolas Patry committed
52
        backend: impl Backend + Send + Sync + 'static,
OlivierDehaene's avatar
OlivierDehaene committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        validation: Validation,
        max_concurrent_requests: usize,
        tokenizer_config: HubTokenizerConfig,
        processor_config: HubProcessorConfig,
    ) -> Self {
        let chat_template = tokenizer_config
            .chat_template
            .or(processor_config.chat_template)
            .and_then(|t| match t {
                ChatTemplateVersions::Single(template) => Some(template),
                ChatTemplateVersions::Multiple(templates) => templates
                    .into_iter()
                    .find(|t| t.name == "default")
                    .map(|t| t.template),
            })
drbh's avatar
drbh committed
68
            .map(|t| ChatTemplate::new(t, tokenizer_config.bos_token, tokenizer_config.eos_token));
OlivierDehaene's avatar
OlivierDehaene committed
69
70
71
72

        // Inference limit with a semaphore
        let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));

Nicolas Patry's avatar
Nicolas Patry committed
73
74
75
        // Backend health
        let backend_health = Arc::new(AtomicBool::new(false));

OlivierDehaene's avatar
OlivierDehaene committed
76
77
        Self {
            validation,
Nicolas Patry's avatar
Nicolas Patry committed
78
            backend: Arc::new(backend),
OlivierDehaene's avatar
OlivierDehaene committed
79
80
            chat_template,
            limit_concurrent_requests: semaphore,
Nicolas Patry's avatar
Nicolas Patry committed
81
            backend_health,
OlivierDehaene's avatar
OlivierDehaene committed
82
83
84
85
86
        }
    }

    /// Add a new request to the queue and return a stream of InferStreamResponse
    #[instrument(skip_all)]
Nicolas Patry's avatar
Nicolas Patry committed
87
88
    pub(crate) async fn generate_stream<'a>(
        &'a self,
OlivierDehaene's avatar
OlivierDehaene committed
89
90
91
92
93
94
95
96
        request: GenerateRequest,
    ) -> Result<GenerateStreamResponse, InferError> {
        // Limit concurrent requests by acquiring a permit from the semaphore
        let permit = self
            .clone()
            .limit_concurrent_requests
            .try_acquire_owned()
            .map_err(|err| {
97
                metrics::counter!("tgi_request_failure", "err" => "overloaded").increment(1);
OlivierDehaene's avatar
OlivierDehaene committed
98
99
100
101
102
103
                tracing::error!("{err}");
                err
            })?;

        // Validate request
        let valid_request = self.validation.validate(request).await.map_err(|err| {
104
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
OlivierDehaene's avatar
OlivierDehaene committed
105
106
107
108
            tracing::error!("{err}");
            err
        })?;

Nicolas Patry's avatar
Nicolas Patry committed
109
110
111
112
        let input_length = valid_request.input_length;
        let generation_stream = self.backend.schedule(valid_request)?;

        Ok((permit, input_length, generation_stream))
OlivierDehaene's avatar
OlivierDehaene committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    }

    /// Tokenizer the input
    #[instrument(skip_all)]
    pub(crate) async fn tokenize(
        &self,
        request: GenerateRequest,
    ) -> Result<Option<tokenizers::Encoding>, InferError> {
        // Tokenize request
        let inputs = request.inputs;
        let truncate = request.parameters.truncate;
        let encoding = self
            .validation
            .tokenize(inputs, truncate)
            .await
            .map_err(|err| {
                tracing::error!("Tokenization {err}");
                err
            })?;

        // Return Encoding
        Ok(encoding.map(|(encoding, _)| encoding))
    }

    /// Apply the chat template to the chat request
    #[instrument(skip_all)]
    pub(crate) fn apply_chat_template(
        &self,
141
        guideline: Option<String>,
OlivierDehaene's avatar
OlivierDehaene committed
142
        messages: Vec<Message>,
drbh's avatar
drbh committed
143
        tools_and_prompt: Option<(Vec<Tool>, String)>,
OlivierDehaene's avatar
OlivierDehaene committed
144
145
146
147
    ) -> Result<String, InferError> {
        self.chat_template
            .as_ref()
            .ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))?
drbh's avatar
drbh committed
148
            .apply(guideline.as_deref(), messages, tools_and_prompt)
OlivierDehaene's avatar
OlivierDehaene committed
149
            .map_err(|e| {
150
                metrics::counter!("tgi_request_failure", "err" => "template").increment(1);
OlivierDehaene's avatar
OlivierDehaene committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
                tracing::error!("{e}");
                e
            })
    }

    /// Add a new request to the queue and return a InferResponse
    #[instrument(skip_all)]
    pub(crate) async fn generate(
        &self,
        request: GenerateRequest,
    ) -> Result<InferResponse, InferError> {
        let use_top_tokens = request.parameters.top_n_tokens.is_some_and(|x| x > 0);

        // Create stream and keep semaphore permit as long as generate lives
Nicolas Patry's avatar
Nicolas Patry committed
165
        let (_permit, _input_length, stream) = self.generate_stream(request).await?;
OlivierDehaene's avatar
OlivierDehaene committed
166
167
168
169
170
171
172
173
174

        // Return values
        let mut result_prefill = Vec::new();
        let mut result_tokens = Vec::new();
        let mut result_top_tokens = Vec::new();
        let mut result_generated_text = None;
        let mut result_start = None;
        let mut result_queued = None;

Nicolas Patry's avatar
Nicolas Patry committed
175
176
        let mut stream = Box::pin(stream);

OlivierDehaene's avatar
OlivierDehaene committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        // Iterate on stream
        while let Some(response) = stream.next().await {
            match response? {
                // Add prefill tokens
                InferStreamResponse::Prefill(prefill_tokens) => {
                    result_prefill = prefill_tokens;
                }
                // Push last token
                InferStreamResponse::Intermediate { token, top_tokens } => {
                    result_tokens.push(token);
                    result_top_tokens.push(top_tokens);
                }
                // Final message
                // Set return values
                InferStreamResponse::End {
                    token,
                    generated_text,
                    start,
                    queued,
                    top_tokens,
                } => {
                    result_tokens.push(token);
                    result_top_tokens.push(top_tokens);
                    result_generated_text = Some(generated_text);
                    result_start = Some(start);
                    result_queued = Some(queued)
                }
            }
        }

        // Check that we received a `InferStreamResponse::End` message
        if let (Some(generated_text), Some(queued), Some(start)) =
            (result_generated_text, result_queued, result_start)
        {
            Ok(InferResponse {
                prefill: result_prefill,
                _input_length,
                tokens: result_tokens,
                generated_text,
                queued,
                start,
                top_tokens: if use_top_tokens {
                    result_top_tokens
                } else {
                    Vec::new()
                },
            })
        } else {
            let err = InferError::IncompleteGeneration;
226
            metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
OlivierDehaene's avatar
OlivierDehaene committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
            tracing::error!("{err}");
            Err(err)
        }
    }
    /// Add best_of new requests to the queue and return a InferResponse of the sequence with
    /// the highest log probability per token
    #[instrument(skip(self, request))]
    pub(crate) async fn generate_best_of(
        &self,
        request: GenerateRequest,
        best_of: usize,
    ) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
        // validate  best_of parameter separately
        let best_of = self.validation.validate_best_of(best_of)?;

        // create multiple generate requests
        let mut infer_responses: Vec<InferResponse> =
            try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;

        // get the sequence with the highest log probability per token
        let mut max_index = 0;
        let mut max_logprob: f32 = f32::MIN;

        for (i, response) in infer_responses.iter().enumerate() {
            // mean logprobs of the generated tokens
            let sequence_logprob = response
                .tokens
                .iter()
                .map(|token| token.logprob)
                .sum::<f32>()
                / response.tokens.len() as f32;

            // set best sequence
            if sequence_logprob > max_logprob {
                max_index = i;
                max_logprob = sequence_logprob;
            }
        }
        let best_response = infer_responses.remove(max_index);
        Ok((best_response, infer_responses))
    }
drbh's avatar
drbh committed
268

Nicolas Patry's avatar
Nicolas Patry committed
269
270
271
272
273
274
275
276
    #[instrument(skip(self))]
    pub(crate) async fn health(&self) -> bool {
        let health = self
            .backend
            .health(self.backend_health.load(Ordering::SeqCst))
            .await;
        self.backend_health.store(health, Ordering::SeqCst);
        health
OlivierDehaene's avatar
OlivierDehaene committed
277
278
279
280
281
282
283
284
285
286
287
    }
}

/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
    OwnedSemaphorePermit,
    u32, // input_length
    UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);

#[derive(Debug)]
Nicolas Patry's avatar
Nicolas Patry committed
288
289
290
291
292
pub struct GeneratedText {
    pub text: String,
    pub generated_tokens: u32,
    pub finish_reason: FinishReason,
    pub seed: Option<u64>,
OlivierDehaene's avatar
OlivierDehaene committed
293
294
295
}

#[derive(Debug)]
Nicolas Patry's avatar
Nicolas Patry committed
296
pub enum InferStreamResponse {
OlivierDehaene's avatar
OlivierDehaene committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    // Optional first message
    Prefill(Vec<PrefillToken>),
    // Intermediate messages
    Intermediate {
        token: Token,
        top_tokens: Vec<Token>,
    },
    // Last message
    End {
        token: Token,
        top_tokens: Vec<Token>,
        generated_text: GeneratedText,
        start: Instant,
        queued: Instant,
    },
}

#[derive(Debug)]
pub(crate) struct InferResponse {
    /// input_length is the input as perceived by the rust tokenizer in the
    /// validation pathway. It is redundant with prefill.len() but prefill
    /// has data only if the user asked for it. This will always be filled.
    pub(crate) _input_length: u32,
    pub(crate) prefill: Vec<PrefillToken>,
    pub(crate) tokens: Vec<Token>,
    pub(crate) generated_text: GeneratedText,
    pub(crate) queued: Instant,
    pub(crate) start: Instant,
    pub(crate) top_tokens: Vec<Vec<Token>>,
}

#[derive(Debug, Error)]
pub enum InferError {
    #[error("Request failed during generation: {0}")]
    GenerationError(String),
    #[error("Model is overloaded")]
    Overloaded(#[from] TryAcquireError),
    #[error("Input validation error: {0}")]
    ValidationError(#[from] ValidationError),
    #[error("Incomplete generation")]
    IncompleteGeneration,
    #[error("Template error: {0}")]
    TemplateError(#[from] minijinja::Error),
340
341
    #[error("Missing template vatiable: {0}")]
    MissingTemplateVariable(String),
OlivierDehaene's avatar
OlivierDehaene committed
342
343
344
345
346
347
348
349
350
351
352
353
    #[error("Tool error: {0}")]
    ToolError(String),
}

impl InferError {
    pub(crate) fn error_type(&self) -> &str {
        match self {
            InferError::GenerationError(_) => "generation",
            InferError::Overloaded(_) => "overloaded",
            InferError::ValidationError(_) => "validation",
            InferError::IncompleteGeneration => "incomplete_generation",
            InferError::TemplateError(_) => "template_error",
354
            InferError::MissingTemplateVariable(_) => "missing_template_variable",
OlivierDehaene's avatar
OlivierDehaene committed
355
356
357
358
            InferError::ToolError(_) => "tool_error",
        }
    }
}