flash_dbrx.py 3.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
import torch.distributed

from opentelemetry import trace
from typing import Optional
from transformers import AutoTokenizer
from transformers.models.gpt2 import GPT2TokenizerFast

from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_dbrx_modeling import (
    FlashDbrxForCausalLM,
    DbrxConfig,
)
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)

tracer = trace.get_tracer(__name__)


class FlashDbrx(FlashCausalLM):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
Nicolas Patry's avatar
Nicolas Patry committed
29
        speculator: Optional[str] = None,
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
    ):
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = torch.bfloat16 if dtype is None else dtype
        else:
            raise NotImplementedError("FlashDBRX is only available on GPU")

        try:
            tokenizer = GPT2TokenizerFast.from_pretrained(
                model_id,
                revision=revision,
                padding_side="left",
                truncation_side="left",
                trust_remote_code=trust_remote_code,
                use_fast=True,
                from_slow=False,
            )
        except:
            try:
                tokenizer = AutoTokenizer.from_pretrained(
                    model_id,
                    revision=revision,
                    padding_side="left",
                    truncation_side="left",
                    trust_remote_code=trust_remote_code,
                    use_fast=True,
                    from_slow=False,
                )
            except:
                # FIXME: change back to model id once the tokenizer.json is merged
                tokenizer = GPT2TokenizerFast.from_pretrained(
                    "Xenova/dbrx-instruct-tokenizer",
                    revision=revision,
                    padding_side="left",
                    truncation_side="left",
                    trust_remote_code=trust_remote_code,
                    use_fast=True,
                    from_slow=False,
                )

        config = DbrxConfig.from_pretrained(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize
Nicolas Patry's avatar
Nicolas Patry committed
77
        config.speculator = speculator
78
79
80
81
82

        torch.distributed.barrier(group=self.process_group)

        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
83
        if config.quantize in ["gptq", "awq", "marlin"]:
84
85
86
87
88
89
            weights._set_gptq_params(model_id, revision)

        model = FlashDbrxForCausalLM(config, weights)

        torch.distributed.barrier(group=self.process_group)
        super(FlashDbrx, self).__init__(
drbh's avatar
drbh committed
90
            model_id=model_id,
91
92
93
94
95
96
97
98
99
100
            model=model,
            tokenizer=tokenizer,
            num_layers=len(model.model.layers),
            num_kv_heads=model.model.num_key_value_heads,
            head_size=model.model.head_size,
            dtype=dtype,
            device=device,
            rank=rank,
            world_size=world_size,
        )