rocm.py 8.72 KB
Newer Older
1
import os
2
from typing import Optional
3
import torch
4
from text_generation_server.layers.attention.kv_cache import KVCache, KVScales
5
from text_generation_server.utils.import_utils import SYSTEM
Nicolas Patry's avatar
Nicolas Patry committed
6
from text_generation_server.layers.attention import Seqlen
7
from text_generation_server.utils.log import log_master
8
9
10
11
from loguru import logger

major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
12
13
14

_PARTITION_SIZE_V1V2 = 512
_PARTITION_SIZE_CUSTOM = 256
15
16
17
18

use_triton = os.getenv("ROCM_USE_FLASH_ATTN_V2_TRITON", "").lower() in {"true", "1"}
ENGINE = "triton" if use_triton else "ck"

19
20
21
use_rocm_custom_paged_attn = os.getenv("ROCM_USE_CUSTOM_PAGED_ATTN", "1") != "0"
try:
    if use_rocm_custom_paged_attn:
xuxzh1's avatar
xuxzh1 committed
22
23
        #from vllm._custom_C import paged_attention_custom
        from vllm import _custom_ops
24
25
26
27
28
29
30
except ImportError as e:
    log_master(
        logger.info,
        f"Custom Paged Attention not available. Complete error: {e}",
    )
    use_rocm_custom_paged_attn = False

31
32
33

def paged_attention(
    query: torch.Tensor,
34
    kv_cache: KVCache,
35
36
37
    kv_head_mapping: torch.Tensor,
    softmax_scale: float,
    block_tables: torch.Tensor,
38
    seqlen: Seqlen,
39
    max_s: int,
40
41
    *,
    kv_scales: KVScales,
42
    softcap: Optional[float] = None,
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
):
    # Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
    # Copyright 2023 The vLLM team. All rights
    # reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #

61
62
63
    if softcap is not None:
        raise RuntimeError("Paged attention doesn't support softcapping")

64
    # value_cache => [num_blocks, num_heads, head_size, block_size]
65
    block_size = kv_cache.value.shape[3]
66
    num_seqs, num_heads, head_size = query.shape
67

68
    num_kv_heads = kv_cache.key.shape[1]
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    gqa_ratio = num_heads // num_kv_heads
    use_custom = (
        use_rocm_custom_paged_attn
        and (query.dtype == torch.half or query.dtype == torch.bfloat16)
        and (head_size == 128 or head_size == 64)
        and (block_size == 16 or block_size == 32)
        and (gqa_ratio >= 1 and gqa_ratio <= 16)
        and max_s <= 32768
    )

    if not use_custom:
        _PARTITION_SIZE = _PARTITION_SIZE_V1V2
    else:
        _PARTITION_SIZE = _PARTITION_SIZE_CUSTOM
xuxzh1's avatar
xuxzh1 committed
83
    
84
    max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
85
    input_lengths = seqlen.input_lengths + seqlen.cache_lengths
86

87
88
    out = torch.empty_like(query)

89
90
91
92
93
    # NOTE(woosuk): We use a simple heuristic to decide whether to use
    # PagedAttention V1 or V2. If the number of partitions is 1, we use
    # V1 to avoid the overhead of reduction. Also, if the number of
    # sequences or heads is large, we use V1 since there is enough work
    # to parallelize.
94
    import vllm._custom_ops as ops
95

96
97
98
99
100
    use_v1 = (
        max_s <= 8192
        and (max_num_partitions == 1 or num_seqs * num_heads > 512)
        and not use_custom
    )
101
102
103
104
    if use_v1:
        ops.paged_attention_v1(
            out,
            query,
105
106
            kv_cache.key,
            kv_cache.value,
xuxzh1's avatar
xuxzh1 committed
107
108
            #kv_head_mapping,
            kv_head_mapping.shape[0],
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
            softmax_scale,
            block_tables,
            input_lengths,
            block_size,
            max_s,
            None,
            "auto",
            1.0,
        )
    else:
        # Run PagedAttention V2.
        assert _PARTITION_SIZE % block_size == 0
        tmp_output = torch.empty(
            size=(num_seqs, num_heads, max_num_partitions, head_size),
            dtype=out.dtype,
            device=out.device,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_heads, max_num_partitions),
            dtype=torch.float32,
            device=out.device,
        )
        max_logits = torch.empty_like(exp_sums)

xuxzh1's avatar
xuxzh1 committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        #if not use_custom:
        ops.paged_attention_v2(
            out,
            exp_sums,
            max_logits,
            tmp_output,
            query,
            kv_cache.key,
            kv_cache.value,
            #kv_head_mapping,
            kv_head_mapping.shape[0],
            softmax_scale,
            block_tables,
            input_lengths,
            block_size,
            max_s,
            None,
            "auto",
            1.0,
        )
        # else:
        #     paged_attention_custom(
        #         out,
        #         exp_sums,
        #         max_logits,
        #         tmp_output,
        #         query,
        #         kv_cache.key,
        #         kv_cache.value,
        #         num_kv_heads,
        #         softmax_scale,
        #         block_tables,
        #         input_lengths,
        #         block_size,
        #         max_s,
        #         None,
        #         "auto",
        #     )
171

172
    return out
173
174
175
176
177
178


if ENGINE != "triton":
    try:
        import flash_attn_2_cuda

179
180
181
182
        log_master(
            logger.info,
            "ROCm: using Flash Attention 2 Composable Kernel implementation.",
        )
Nicolas Patry's avatar
Nicolas Patry committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    except ImportError as e:
        if major >= 8:
            architecture_suffix = f"-{SYSTEM}"
            raise ImportError(
                "Flash Attention V2 is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
            )
        elif is_sm75:
            raise ImportError(
                "Flash Attention is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                "or install flash attention with `cd server && make install install-flash-attention`"
            ) from e
        else:
            for idx in range(torch.cuda.device_count()):
                name = torch.cuda.get_device_name(idx)
                if "MI210" not in name and "MI250" not in name:
                    raise ImportError(
                        f"AMD GPU {torch.cuda.get_device_name(idx)} does not support flash-attention"
                    )
            raise ImportError(
                f"AMD GPU with ROCm capability {major} {minor} is not supported"
            ) from e


SUPPORTS_WINDOWING = False
210
211
212
213
214
215
216
217


def attention(
    *,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    kv_cache: KVCache,
218
    kv_scales: KVScales,
219
220
221
222
223
224
225
226
    seqlen: Seqlen,
    block_tables: torch.Tensor,
    softmax_scale: float,
    window_size_left: int = -1,
    causal: bool = True,
    softcap: Optional[float] = None,
):
    if ENGINE == "ck":
227
228
        if window_size_left <= 0 and window_size_left != -1:
            raise ValueError("`window_size_left` must be > 0 or -1")
229

230
231
232
233
        out = torch.empty_like(query)

        if softcap is None:
            softcap = 0.0
234

235
        # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
xuxzh1's avatar
xuxzh1 committed
236
            return flash_attn_2_cuda.varlen_fwd(
237
238
239
            query,
            key,
            value,
240
            out,
241
242
243
244
245
246
247
248
            seqlen.cu_seqlen_q,
            seqlen.cu_seqlen_q,
            None,
            None,
            None,
            None,
            seqlen.max_q,
            seqlen.max_k,
249
250
251
252
            0.0,
            softmax_scale,
            False,
            causal,
253
254
255
            window_size_left,
            0,
            softcap,
256
257
            False,
            None,
258
        )[0]
xuxzh1's avatar
xuxzh1 committed
259
        
260
261
262
    elif ENGINE == "triton":
        from .flash_attn_triton import triton_attention

263
264
265
        if softcap is not None:
            raise NotImplementedError("softcap is only available with CK flash attn")

266
        out = torch.empty_like(query)
267

268
        # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
269
        output, _ = triton_attention(
270
271
272
            query,
            key,
            value,
273
            out,
274
275
276
277
            seqlen.cu_seqlen_q,
            seqlen.cu_seqlen_q,
            seqlen.max_q,
            seqlen.max_k,
278
279
280
281
282
            causal,
            softmax_scale,
        )
        return output

283
284
285
    else:
        raise RuntimeError(f"Unknown attention engine {ENGINE}")

286
287
288
289
290
291

__all__ = [
    "SUPPORTS_WINDOWING",
    "attention",
    "paged_attention",
]